4 resultados para Non-leaf organs

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Targeted internal radionuclide therapy (TRT) would be an effective alternative to current therapies for dissemi- nated melanoma treatment. At our institution, a class of iodobenzamides has been developed as potent melanoma- seeking agents. This review described the preclinical vali- dations of a quinoxaline derivative molecule (ICF01012) as tracer for TRT application. It was selected for its high, specific and long-lasting uptake in tumour with rapid clear- ance from non-target organs providing suitable dosimetry parameters for TRT. Extended in vivo study of metabolic profiles confirmed durable tumoural concentration of the unchanged molecule form. Moreover melanin specificity of ICF01012 was determined by binding assay with syn- thetic melanin and in vivo by SIMS imaging. Then, we showed in vivo that [131I] ICF01012 treatment drastically inhibited growth of B16F0, B16Bl6 and M4Beu tumours whereas [131I] NaI or unlabelled ICF01012 treatment was without significant effect. Histological analysis showed that residual tumour cells exhibit a significant loss of aggres- siveness after treatment. This anti-tumoural effect was associated with a lengthening of the treated-mice survival time and an inhibition of lung dissemination for B16Bl6 model. Results presented here support the concept of TRT using a [131I] labelled iodoquinoxaline derivative for an effective melanoma treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of copper radioisotopes in cancer diagnosis and radionuclide therapy is possible using chelators that are capable of binding Cu(II) with sufficient stability in vivo to provide high tumour-to-background contrast. Here we report the design and synthesis of a new bifunctional chelator, 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid (MeCOSar), that forms copper complexes of exceptional stability by virtue of a cage amine (sarcophagine) ligand and a new conjugate referred to as SarTATE, obtained by the conjugation of MeCOSar to the tumour-targeting peptide Tyr(3)-octreotate. Radiolabeling of SarTATE with (64)Cu(II), a radioisotope suitable for positron emission tomography (PET), was fast (~20 min), easily performed at room temperature and consistently resulted in high radiochemical purity (>99%). In vitro and in vivo evaluation of (64)CuSarTATE demonstrated its high selectivity for tumour cells expressing somatostatin receptor 2 (sstr2). Biodistribution and PET imaging comparisons were made between (64)CuSarTATE and (64)Cu-labeled DOTA-Tyr(3)-octreotate ((64)CuDOTATATE). Both radiopharmaceuticals showed excellent uptake in sstr2-positive tumours at 2 h post-injection. While tumour uptake of (64)CuDOTATATE decreased significantly at 24 h, (64)CuSarTATE activity was retained, improving contrast at later time points. (64)CuSarTATE accumulated less than (64)CuDOTATATE in the non-target organs, liver and lungs. The uptake of (64)CuSarTATE in the kidneys was high at 2 h but showed significant clearance by 24 h. The new chemistry and pre-clinical evaluation presented here demonstrates that MeCOSar is a promising bifunctional chelator for Tyr(3)-octreotate that could be applied to a combined imaging and therapeutic regimen using a combination of (64)Cu- and (67)CuSarTATE complexes, owing to improved tumour-to-non-target organ ratios compared to (64)CuDOTATATE at longer time points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meiofauna from Avicennia marina leaf litter in a temperate mangrove forest was enumerated, and the nematode assemblages compared on the bases of leaf colour (used as a guide to leaf age) and shore horizon where samples were collected. Twenty-one putative nematode species were collected from 48 leaf litter samples. Univariate analyses indicated that neither the colour of the leaf nor the shore horizon significantly affected abundance of nematodes. However, of the four (222) treatment groups, rarefaction curves revealed highest diversity on brown leaves from under the shade of the tree canopy (H'=0.751-0.126 SE, n=17). Species diversity of leaf litter nematodes was lower in this temperate mangrove system than reported from tropical mangrove studies. ANOSIM tests confirmed a significant effect of shore horizon on nematode assemblages. The dominant feeding group among nematodes was non-selective deposit feeders (7/21 species, but 77% of all nematodes). Epigrowth grazers were represented by 8/21 species of nematodes, but only 19% of the total number. Excised leaves became skeletonised by about 15 weeks. Shorter temporal scales of life cycles of nematodes compared with leaf degradation, and the dynamic nature of epibiontic assemblages, probably explain the similar assemblage structure on yellow and brown leaves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal plant growth is the result of the interaction of a complex network of plant hormones and environmental signals. Ascorbic acid (AsA) is a crucial antioxidant in plants and is involved in the regulation of cell division, cell expansion, photosynthesis and hormone biosynthesis. Quantitative analysis of AsA in Arabidopsis thaliana organs was conducted using HPLC with d -isoascorbic acid (Iso-AsA) as an internal standard. Analysis revealed Àuctuations in the levels of AsA in different organs and growth phases when plants were grown under standard conditions. AsA concentrations increased in leaves in direct proportion to leaf size and age. Young siliques (seed set stage) and Àowering buds (open and unopened) showed the highest levels of AsA. A relationship was found between the level of AsA and indole acetic acid (IAA) in leaves, stems, Àowers, and siliques and the highest level of IAA and AsAwere found in the Àowers. In contrast, the lowest level of the plant hormone, salicylic acid, was found in the Àowers and the highest quantity measured in the leaves. Consequently, AsA has been found to be a multifunctional molecule that is involved as a key regulator of plant growth and development.