74 resultados para Niobium carbide. 15Kh2MFA ferritic steel. Powder metallurgy. High energy milling and composite materials

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanochemical processing of anhydrous chloride precursors with Na2CO3 has been investigated as a means of manufacturing nanocrystalline SnO2 doped ZnO photocatalysts. High-energy milling and heat-treatment of a 0.1SnCl2+0.9ZnCl2+Na2CO3+4NaCl reactant mixture was found to result in the formation of a composite powder consisting of oxide grains embedded within a matrix of NaCl. Subsequent washing with deionized water resulted in removal of the NaCl matrix phase and partial hydration of the oxide reaction product with the consequent formation of ZnSn(OH)6. The extent of this hydration reaction was found to decrease in a linear fashion with the temperature of the post-milling heat-treatment over the range of 400–700 °C. For a heat-treatment temperature of 700 °C, the SnO2 doped ZnO powder was found to exhibit significantly higher photocatalytic activity than either single-phase SnO2 or ZnO powders that were synthesized using similar processing conditions. The heightened photocatalytic activity of the SnO2 doped ZnO was attributed to its higher specific surface area and the enhanced charge separation arising from the coupling of ZnO with SnO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the structure and properties relationship, surface modification, biocompatibility and bioactivity of a porous Ti-Nb-Zr alloy. The porous alloy exhibited inter-connected porous structure, good biocompatibility and high mechanical strength with an elastic modulus close to that of bone. Porous Ti-Nb-Zr alloys are thus promising biomaterials for hard tissue replacement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-porous nickel (Ni) with an open cell structure was fabricated by a special powder metallurgical process, which includes the adding of a space-holding material. The average pore size of the micro-porous Ni samples approximated 30 μm and 150 μm, and the porosity ranged from 60 % to 80 %. The porous characteristics of the Ni samples were observed using scanning electron microscopy (SEM) and the mechanical properties were evaluated using compressive tests. For comparison, porous Ni samples with a macro-porous structure prepared by both powder metallurgy<br />(pore size 800 μm) and the traditional chemical vapour deposition (CVD) method (pore size 1300 μm) were also presented. Results indicated that the porous Ni samples with a micro-porous structure exhibited different deformation behaviour and dramatically increased mechanical properties,
compared to those of the macro-porous Ni samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructural evolution and characteristics of the Ti–16Sn–4Nb powder particles and bulk alloys sintered from the powders ball-milled for various periods of time were studied. Results indicated that ball milling to 8 h led to the development of a supersaturated hcp α-Ti and partial amorphous phase due to the solid solution of Sn and Nb into Ti lattice. The bulk Ti–16Sn–4Nb alloy made from the powders ball milled for a short time, up to 2 h, exhibited a primary α and a Widmanstätten structure consisting of interlaced secondary α and β. With an increase in ball milling time up to 10 h, the microstructure evolved into a fine β phase dispersed homogeneously within α phase matrix. The microhardness values of the bulk alloy in both α- and β-phases increased with the increasing of the ball milling time and reached a plateau value at 8 h and longer, i.e. 687 and 550 HV for α- and β-phases, respectively. Likewise, the microhardness of the α phases was always higher than that of the β phases in the bulk alloys made from the powders ball milled for the same milling time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO powder showed anomalous evaporation behavior after its mechanical milling treatment under high-energy conditions. The amount of generated vapor is about 10 times higher in the first 15 min of annealing at 1300 °C than that of unmilled ZnO powders. The strong ball impacts are responsible for the greatly enhanced evaporation ability. Low-energy ball milling involving shearing actions and rare weak impacts leads only to a small evaporation rate enhancement. The possible explanation of the high evaporation rate of the heavily milled material is the existence of large fraction of weakly bonded atoms in grain boundaries, surface defects and strained areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous Ti-Mo alloy samples with different porosities from 52% to 72% were successfully fabricated by the space-holder sintering method. The pore size of the porous Ti-Mo alloy samples were ranged from 200 to 500 μm. The plateau stress and elastic modulus of the porous Ti-Mo alloy samples increases with the decreasing of the porosity. Moreover, an apatite coating on the Ti-Mo alloy after an alkali and heat treatment was obtained through soaking into a simulated body fluid (SBF). The porous Ti-Mo alloy provides promising potential for new implant materials with new bone tissue ingrowth ability, bioactivity and mechanical properties mimicking those of natural bone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biocompatible porous Ti-16Sn-4Nb alloys were synthesised in quest of a novel tissue engineering biomaterial for bone regeneration. The alloys were prepared from elemental powders via mechanical alloying followed by space-holder sintering. The effects of ball milling variables on the characteristics and mechanical properties of bulk and porous Ti-16Sn-4Nb alloy have been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, porous nickel foam samples with pore sizes of 20 μm and 150 μm and porosities of 60 % and 70 % were fabricated by the space-holding sintering method via powder metallurgy. Electron scanning microscopy (SEM) and Image-Pro Plus were used to characterise the morphological features of the porous nickel foam samples. The anisotropic mechanical properties of porous nickel foams were investigated by compressive testing loading in different directions, i.e. the major pore axis and minor pore axis. Results indicated that the nominal stress of the nickel foam samples increases with the decreasing of the porosity. Moreover, the foam sample exhibited significantly higher nominal stress for loading in the direction of the major pore axis than loading in direction of the minor pore axis. It is also noticeable that the nominal stress of the nickel foams increases with the decreasing of the pore size. It seems that the deformation behaviour of the foams with a pore size in the micron-order differs from those with a macro-porous structure.