12 resultados para Ni-Cr-Mo-Ti

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fe-C-Cr-Nb-B-Mo alloy powder and AISI 420 SS powder are deposited using laser cladding to increase the hardness for wear resistant applications. Mixtures from 0 to 100 wt.% were evaluated to understand the effect on the elemental composition, microstructure, phases, and microhardness. The mixture of carbon, boron and niobium in the Fe-C-Cr-Nb-B-Mo alloy powder introduces complex carbides into a Fe-based matrix of AISI 420 SS which increases its hardness. Hardness increased linearly with increasing Fe-C-Cr-Nb-B-Mo alloy, but substantial micro-cracking was observed in the clad layer at additions of 60 wt.% and above; related to a transition from a hypoeutectic alloy containing α-Fe/α' dendrites with an (Fe,Cr)2B and γ-Fe eutectic to primary and continuous carbo-borides M2B (where M represents Fe and Cr) and M23(B,C)6 carbides (where M represents Fe, Cr, Mo) with MC particles (where M represents Nb and Mo). The highest average hardness, for an alloy without micro-cracking, of 952 HV was observed in a 40 wt.% alloy. High stress abrasive scratch testing was conducted on all alloys at various loads (500, 1500, 2500 N). Alloy content was found to have a strong effect on the wear mode and the abrasive wear rate, and the presence of micro-cracks was detrimental to abrasive wear resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An understanding of the rate and the mechanism of reaction is of fundamental importance in the many facets of chemistry. Electrochemical systems are further complicated by the heterogeneous boundary, between the solution and the electrode, that the electron passes through before any electrochemical reaction can take place. This thesis concerns the development of methods for analysing electrode kinetics. One part involves the further development of the Global Analysis procedure to include electrodes with a spherical geometry which are traditionally the most popular form of electrodes. Simulated data is analysed to ascertain the accuracy of the procedure and then the known artifacts of uncompensated solution resistance and charging current are added to the simulated data so that the effects can be observed. The experimental analysis of 2-methyl-2-nitropropane is undertaken and comparisons are made with the Marcus-Hush electrochemical theories concerning electrode kinetics. A related section explores procedures for the kinetic analysis of steady state voltammetric data obtained at microdisc electrodes. A method is proposed under the name of Normalised Steady State Voltammetry and is tested using data obtained from a Fast Quasi-Explicit Finite Difference simulation of diffusion to a microdisc electrode. In a second area of work using microelectrodes, the electrochemical behaviour of compounds of the general formula M(CO)3(η3 - P2P1) where M is either Cr, Mo or W and P2P' is bis(2-diphenylphosphinoethyl)phenylphosphine) is elucidated. The development of instrumentation and mathematical procedures relevant to the measurement and quantitation of these systems is also investigated. The tungsten compound represents the first examples where the 17-electronfac+ and mer+ isomers are of comparable stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a solution containing ammonium fluoride (NH4F) and nitric acid (HNO3) was used as an alternative to the conventional highly toxic pickling solution HF/HNO3 for pickling weldments of selected stainless steels including Type 316 stainless steel (UNS S31600), duplex stainless steel 2205 (UNS S32205), and super duplex stainless steel 2507 (UNS S32750). Electrochemical and surface analytical methods were used to understand the effects of pickling on the stainless steel weldments. Cyclic potentiodynamic polarization (CPP) test results indicated that the restoration of passivity of stainless steel weldments could be achieved by pickling the weldments in both HF/HNO3 solution and NH4F/HNO3 solutions. Scanning electron microscopy observation of the UNS S32750 weldment surface revealed that both the HF/HNO3 solution and the NH4F/HNO3 solution could remove the heat tint on the weldment. X-ray photoelectron spectroscopy analysis indicated that treatment in these two pickling solutions produced passive films with similar characteristics. Thus, this work suggests that the NH4F/HNO3 solution is a promising alternative to HF/HNO3 solution for the pickling of stainless steel weldments, and that the CPP test approach can be used in conjunction with surface analytical methods for further development of safer and environmentally friendly picklingsolutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of a centrally functionalized, ribbon-shaped [6]polynorbornane ligand L that self-assembles with PdII cations into a (Pd2L4) coordination cage is reported. The shape-persistent (Pd2L4) cage contains two axial cationic centers and an array of four equatorial H-bond donors pointing directly towards the center of the cavity. This precisely defined supramolecular environment is complementary to the geometry of classic octahedral complexes [M(XY)6] with six diatomic ligands. Very strong binding of [Pt(CN)6]2- to the cage was observed, with the structure of the host-guest complex ([Pt(CN)6]@Pd2L4) supported by NMR spectroscopy, MS, and X-ray data. The self-assembled shell imprints its geometry on the encapsulated guest, and desymmetrization of the octahedral platinum species by the influence of the D4h-symmetric second coordination sphere was evidenced by IR spectroscopy. [Fe(CN)6]3- and square-planar [Pt(CN)4]2- were strongly bound. Smaller octahedral anions such as [SiF6]2-, neutral carbonyl complexes ([M(CO)6]; M=Cr, Mo, W) and the linear [Ag(CN)2]- anion were only weakly bound, showing that both size and charge match are key factors for high-affinity binding.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Titanium and some of its alloys are well accepted as load-bearing implant materials due to their excellent mechanical properties, superior corrosion resistance, and outstanding biocompatibility. However, solid implant materials may suffer from the problems of adverse tissue reaction, biomechanical mismatch and lack of new bone tissue ingrowth ability. In the present study, porous titanium-molybdenum (Ti-Mo) alloy was fabricated by the space-holding sintering method. The pore size, pore shape and porosity can be controlled through choosing appropriate space-holding particle materials. Electron scanning microscopy (SEM) was used for the characterisation of the porous Ti-Mo alloy. The mechanical properties of the porous Ti-Mo alloy samples were investigated by compressive tests. Results indicated that the porous Ti-Mo alloy provides promising potential for new implant materials with new bone tissue ingrowth ability and mechanical properties mimicking those of natural bone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interest in using titanium (Ti) alloys as load-bearing implant materials has increased due to their high strength to weight ratio, lower elastic modulus, and superior biocompatibility and enhanced corrosion resistance compared to conventional metals such as stainless steel and Co-Cr alloys. In the present study, the in vitro cytotoxicity of five binary titanium alloys, Ti15Ta, Ti15Nb, Ti15Zr, Ti15Sn and Ti15Mo, was assessed using human osteosarcoma cell line, SaOS-2 cells. The Cell proliferation and viability were determined, and cell adhesion and morphology on the surfaces of the binary Ti alloys after cell culture were observed by SEM. Results indicated that the Ti binary alloys of Ti15Ta, Ti15Nb and Ti15Zr exhibited the same level of excellent biocompatibility; Ti15Sn alloy exhibited a moderate biocompatibility while Ti15Mo alloy exhibited a moderate cytotoxicity. The SaOS-2 osteoblast-like cells had flattened and spread across the surfaces of the Ti15Ta, Ti15Nb, Ti15Zr and Ti15Sn groups; however, the cell shapes on the Ti15Mo alloy was shrinking and unhealthy. These results indicated that the Mo contents should be limited to a certain level in the design and development of new Ti alloys for implant material applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shear-banding features of as-cast and annealed Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass were investigated through Rockwell indentation tests. Isothermal annealing of the as-cast samples was conducted at temperatures below its glass transition temperature, Tg. The exothermal enthalpy during continuous heating below Tg decreases with increasing annealing temperature, indicating the gradual reduction of free-volume upon annealing. The observation on the morphology of shear-banding pattern around the indents implies a reduced shear bands activity in the annealed samples. The included angles (2θ) between two families of shear bands emanating from the edge of Rockwell indent decrease from 88° for the as-cast sample to 79° for the sample annealed at 633 K for 1 h, indicating a pressure sensitive plasticity. By Mohr–Coulomb criterion, the pressure sensitive index can be obtained on the basis of the measured 2θ, which increases with increasing annealing temperature, indicating an increase of “atomistic friction” due to the reduction of the free volume upon annealing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium-nickel (Ti-Ni) shape memory alloys have been widely used for biomedical applications in recent years. However, it is reported that Ni is allergic and possibly carcinogenic for the human body. Therefore, it is desirable to develop new Ni-free Ti-based shape memory alloys for biomedical applications. In the present study, a new Ti-18Nb-5Mo-5Sn (wt.%) alloy, containing only biocompatible alloying elements, was designed with the aid of molecular orbital method and produced by vacuum arc melting. Both β and α″ martensitic phases were found to coexist in the alloy after ice-water quenching, indicating the martensitic transformation. The phase transformation temperatures of the Ti-18Nb-5Mo-5Sn alloy were Ms = 7.3 °C, Mf = −31.0 °C, As = 9.9 °C, and Af = 54.8 °C. Superelasticity was observed in the alloy at a temperature higher than the Af temperature. A totally recovered strain of 3.5 % was achieved for the newly designed Ti-based shape memory alloy with a pre-strain of 4 %.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the chip formation mechanism and machinability of two-phase materials, such as, wrought duplex stainless steel alloys SAF 2205 and SAF 2507. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Microhardness profiles reveal correlation in hardness from the workpiece material transitioning to the chip. The tool wear (TiAIN + TiN coated solid carbide twist drill) and machining forces were investigated. Tool wear, was dominantly due to the adhesion process which developed from built-up edge formation, is highly detrimental to the flank face. Flute damage was also observed as a major issue in the drilling of duplex alloys leading to premature tool failure. Duplex 2507 shows higher sensitivity to cutting speed during machining and strain hardening at higher velocity and less machinability due to presence of higher percentage of Ni, Mo and Cr.