18 resultados para Neuropeptide S

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective:
Palatable food disrupts normal appetite regulation, which may contribute to the etiology of obesity. Neuropeptide Y (NPY) and cholecystokinin play critical roles in the regulation of food intake and energy homeostasis, while adiponectin and carnitine palmitoyltransferase (CPT) are important for insulin sensitivity and fatty acid oxidation. This study examined the impact of short- and long-term consumption of palatable high-fat diet (HFD) on these critical metabolic regulators.

Methods:
Male C57BL/6 mice were exposed to laboratory chow (12% fat), or cafeteria-style palatable HFD (32% fat) for 2 or 10 weeks. Body weight and food intake were monitored throughout. Plasma leptin, hypothalamic NPY and cholecystokinin, and mRNA expression of leptin, adiponectin, their receptors and CPT-1, in fat and muscles were measured.

Results:
Caloric intake of the palatable HFD group was 2–3 times greater than control, resulting in a 37% higher body weight. Fat mass was already increased at 2 weeks; plasma leptin concentrations were 2.4 and 9 times higher than control at 2 and 10 weeks, respectively. Plasma adiponectin was increased at 10 weeks. Muscle adiponectin receptor 1 was increased at 2 weeks, while CPT-1 mRNA was markedly upregulated by HFD at both time points. Hypothalamic NPY and cholecystokinin content were significantly decreased at 10 weeks.

Conclusion:
Palatable HFD induced hyperphagia, fat accumulation, increased adiponectin, leptin and muscle fatty acid oxidation, and reduced hypothalamic NPY and cholecystokinin. Our data suggest that the adaptive changes in hypothalamic NPY and muscle fatty acid oxidation are insufficient to reverse the progress of obesity and metabolic consequences induced by a palatable HFD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are sex differences in the activation of the hypothalamo-pituitary-adrenal axis in response to stress, but the source of these differences is unknown. The hypothalamo-pituitary-adrenal axis is regulated by corticotropin-releasing hormone and arginine-vasopressin neurones located in the paraventricular nucleus and these, in turn, are regulated by neural systems that include afferent noradrenergic and neuropeptide Y (NPY)-producing neural pathways. We tested the hypothesis that concentrations of noradrenaline and NPY will be elevated in cerebrospinal fluid (CSF) sampled from the third cerebral ventricle in response to stress, and these responses will differ in males and females. We collected concurrent samples of CSF (1 ml) from the third ventricle and blood (5 ml) from the jugular vein from gonadectomised rams (n = 7) and ewes (n = 5) at 10-min intervals for 3 h. This procedure was conducted on a day when no stress was imposed and on a day when audiovisual stress was imposed for 5 min after 1 h of sampling. Following the audiovisual stress, plasma concentrations of cortisol and CSF concentrations of noradrenaline were elevated (p < 0.05), but CSF concentrations of NPY did not change. Adrenaline was not detected in samples of CSF. The rise in plasma cortisol following the stress was greater (p < 0.05) in ewes than in rams, but there were no sex differences in the rise in noradrenaline. Basal concentrations of NPY in the CSF were higher (p < 0.05) in rams than in ewes. We conclude that the sex differences in the stress-induced activity of the hypothalamo-pituitary-adrenal axis in sheep are not likely to be due to differences in the level of noradrenergic and/or NPY input to the hypothalamus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: High-fat diet (HFD)-induced hypertension in rabbits is neurogenic because of the central sympathoexcitatory actions of leptin. Hypothalamic melanocortin and neuropeptide Y (NPY) neurons are recognized as the major signalling pathways through which leptin exerts its central effects. In this study, we assessed the effects of specific antagonists and agonists to melanocortin and NPY receptors on HFD-induced sympathoexcitation and hypertension. METHODS: Rabbits were instrumented with intracerebroventricular cannula, renal sympathetic nerve activity (RSNA) electrode, and blood pressure telemetry transmitter. RESULTS: After 3 weeks HFD (13.5% fat, n = 12) conscious rabbits had higher RSNA (+3.8  nu, P = 0.02), blood pressure (+8.6  mmHg, P < 0.001) and heart rate (+15  b/min, P = 0.01), and brain-derived neurotrophic factor levels in the hypothalamus compared with rabbits fed a control diet (4.2% fat, n = 11). Intracerebroventricular administration of the melanocortin receptor antagonist SHU9119 reduced RSNA (-2.7  nu) and blood pressure (-8.5  mmHg) in HFD but not control rabbits, thus reversing 100% of the hypertension and 70% of the sympathoexcitation induced by a HFD. By contrast, blocking central NPY Y1 receptors with BVD10 increased RSNA only in HFD rabbits. Intracerebroventricular α-melanocortin stimulating hormone increased RSNA and heart rate (P < 0.001) in HFD rabbits but had no effect in control rabbits. CONCLUSION: These findings suggest that obesity-induced hypertension and increased RSNA are dependent on the balance between greater activation of melanocortin signalling through melanocortin receptors and lesser activation of NPY sympathoinhibitory signalling. The amplification of the sympathoexcitatory effects of α-melanocortin stimulating hormone also indicates that the underlying mechanism is related to facilitation of leptin-melanocortin signalling, possibly involving chronic activation of brain-derived neurotrophic factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gene GAD2 encoding the glutamic acid decarboxylase enzyme (GAD65) is a positional candidate gene for obesity on Chromosome 10p11&ndash;12, a susceptibility locus for morbid obesity in four independent ethnic populations. GAD65 catalyzes the formation of γ-aminobutyric acid (GABA), which interacts with neuropeptide Y in the paraventricular nucleus to contribute to stimulate food intake. A case-control study (575 morbidly obese and 646 control subjects) analyzing GAD2 variants identified both a protective haplotype, including the most frequent alleles of single nucleotide polymorphisms (SNPs) +61450 C>A and +83897 T>A (OR = 0.81, 95% CI [0.681&ndash;0.972], p = 0.0049) and an at-risk SNP (&minus;243 A>G) for morbid obesity (OR = 1.3, 95% CI [1.053&ndash;1.585], p = 0.014). Furthermore, familial-based analyses confirmed the association with the obesity of SNP +61450 C>A and +83897 T>A haplotype (χ2 = 7.637, p = 0.02). In the murine insulinoma cell line βTC3, the G at-risk allele of SNP &minus;243 A>G increased six times GAD2 promoter activity (p < 0.0001) and induced a 6-fold higher affinity for nuclear extracts. The &minus;243 A>G SNP was associated with higher hunger scores (p = 0.007) and disinhibition scores (p = 0.028), as assessed by the Stunkard Three-Factor Eating Questionnaire. As GAD2 is highly expressed in pancreatic β cells, we analyzed GAD65 antibody level as a marker of β-cell activity and of insulin secretion. In the control group, &minus;243 A>G, +61450 C>A, and +83897 T>A SNPs were associated with lower GAD65 autoantibody levels (p values of 0.003, 0.047, and 0.006, respectively). SNP +83897 T>A was associated with lower fasting insulin and insulin secretion, as assessed by the HOMA-B% homeostasis model of β-cell function (p = 0.009 and 0.01, respectively). These data support the hypothesis of the orexigenic effect of GABA in humans and of a contribution of genes involved in GABA metabolism in the modulation of food intake and in the development of morbid obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence for the presence of a putative egg-laying (ELH) hormone has been previously described in the black tiger shrimp, Penaeus monodon, so a further investigation was carried out to detect its presence in a range of Decapoda crustaceans prior to a full molecular analysis. The crustaceans were represented by the Australian fresh water yabbie, Cherax destructor, the Australian southern rock lobster, Jasus edwardsii, the snow crab, Chionoecetes opilio, and the blue swimmer crab, Portunus pelagicus. Female cerebral ganglia, ventral nerve cords and gonads were investigated in a comparative study of the distribution of the immunoreactive hormone using immunoenzyme and immunofluorescence techniques. Immunoreactivity was detected in all tissues of interest, and the distribution patterns showed similarity within the four species, as well as that of P. monodon reported in the earlier study. There were minor variations. These data indicate that a putative ELH-like neuropeptide is widespread in crustaceans, and supports its previous identification in a range of molluscs and other invertebrates. Elucidation of the molecular structure of the peptide hormone and its encoding gene, as well as its involvement in spawning behaviour of crustaceans, is now fully under investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Examines alterations in corticotropin-releasing factor concentration and nerve release during maturation and aging in the rat brain. Release of neuropeptide Y was also measured. These studies may provide information leading to the effective treatment of age-related disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gonadotropin-releasing hormone (GnRH) is a neuropeptide that is conserved in both vertebrate and invertebrate species. In this study, we have demonstrated the presence and distribution of two isoforms of GnRH-like peptides in neural ganglia and ovary of reproductively mature female abalone, Haliotis asinina, using immunohistochemistry. We found significant immunoreactivities (ir) of anti-lamprey(I) GnRH-III and anti-tunicate(t) GnRH, but with variation of labeling intensity by each anti-GnRH type. IGnRH-III-ir was detected in numerous type1 neurosecretory cells (NS1) throughout the cerebral and pleuropedal ganglia, whereas tGnRH-I-ir was detected in only a few NS1 cells in the dorsal region of cerebral and pleuropedal ganglia. In addition, a small number of type2 neurosecretory cells (NS2) in cerebral ganglion showed lGnRH-III-ir. Long nerve fibers in the neuropil of ventral regions of the cerebral and pleuropedal ganglia showed strong tGnRH-I-ir. In the ovary, lGnRH-III-ir was found primarily in oogonia and stage I oocytes, whereas tGnRH-ir was observed in stage I oocytes and some stage II oocytes. These results indicate that GnRH produced in neural ganglia may act in neural signaling. Alternatively, GnRH may also be synthesized locally in the ovary where it could induce oocytes development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Egg-laying hormone (ELH) is a neuropeptide hormone that stimulates ovulation of gastropods, including Aplysia californica and Lymnaea stagnalis. Other neuropeptides, gonadotropin releasing hormones (GnRHs), also play important roles in controlling reproduction in both vertebrates and invertebrates. In the current study, the effects of abalone ELH (aELH) and several GnRHs on somatic growth, sex differentiation, gonad maturation, and spawning of Haliotis asinina were investigated in 3 experiments. In experiment 1, groups of 4-mo-old juveniles (11.8&nbsp;&plusmn;&nbsp; 0.03 mm shell length (SL) and 0.33&nbsp;&plusmn; 0.04 g body weight (BW)) were injected with aELH and GnRHs, including buserelin (mammalian GnRH analogue), octopus GnRH (octGnRH), and tunicate GnRH-I (tGnRH-I), at doses of 20 ng/g BW and 200 ng/g BW. The aELH induced early sex differentiation with a bias toward females, but with normal somatic growth, whereas the different isoforms of GnRH had no effect on sexual differentiation or somatic growth. In experiment 2, groups of 1-y-old-abalone (SL, 4.04&nbsp;&plusmn; 0.02 cm; BW, 20.15&nbsp;&plusmn;&nbsp;0.25 g) were injected with aELH and the 3 isoforms of GnRH including buserelin, octGnRH, and lamprey GnRH (1GnRH-I) at doses of 500 ng/g BW and 1,000 ng/g BW, and all produced stimulatory effects. For each peptide treatment, the gonads reached full maturation within 5- 6 wk and spawning occurred, whereas control groups took 8 wk to reach maturity. In experiment 3, injections of ripe abalone with aELH stimulated spawning of both sexes in a dose-dependent manner. Buserelin had a lesser effect on inducing spawning, and octGnRH had no apparent effect. The gametes released from induced spawnings by aELH and GnRH showed normal fertilization and development of larvae. Altogether, these findings provide further knowledge on manipulating abalone reproduction, which is important in improving abalone aquaculture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Like many desert animals, the spinifex hopping mouse, Notomys alexis, can maintain water balance without drinking water. The role of the kidney in producing a small volume of highly concentrated urine has been well-documented, but little is known about the physiological mechanisms underpinning the metabolic production of water to offset obligatory water loss. In Notomys, we found that water deprivation (WD) induced a sustained high food intake that exceeded the pre-deprivation level, which was driven by parallel changes in plasma leptin and ghrelin and the expression of orexigenic and anorectic neuropeptide genes in the hypothalamus; these changed in a direction that would stimulate appetite. As the period of WD was prolonged, body fat disappeared but body mass increased gradually, which was attributed to hepatic glycogen storage. Switching metabolic strategy from lipids to carbohydrates would enhance metabolic water production per oxygen molecule, thus providing a mechanism to minimize respiratory water loss. The changes observed in appetite control and metabolic strategy in Notomys were absent or less prominent in laboratory mice. This study reveals novel mechanisms for appetite regulation and energy metabolism that could be essential for desert rodents to survive in xeric environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current pharmacological treatments for bipolar disorder (BD) are limited and efficacy has historically been discovered through serendipity. There is now scope for new drug development, focused on the underlying biology of BD that is not targeted by current therapies. The need for novel treatments is urgent when considering treatment resistant BD, where current therapies have failed. While established drugs targeting the monoamine systems continue to be worthwhile, new biological targets including inflammatory and oxidative an nitrosative pathways, apoptotic and neurotrophic pathways, mitochondrial pathways, the N-methyl-Daspartate (NMDA)-receptor complex, the purinergic system, neuropeptide system, cholinergic system and melatonin pathways are all being identified as potential anchors for the discovery of new agents. Many agents are experimental and efficacy data is limited, however further investigation may provide a new line for drug discovery, previously stalled by lack of corporate interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we report the distribution of orexin A (OXA), orexin B (OXB), and orexin receptor (OX2R) immunoreactive (ir) cells in the hypothalamus and gastrointestinal tract of Oncorhynchus mykiss fed diets with different dietary fatty acid compositions. Trout were fed five iso-energetic experimental diets containing fish oil, or one of four different vegetable oils (olive, sunflower, linseed, and palm oils) as the added dietary lipid source for 12 weeks. OXA, OXB, and OX2R immunoreactive neurons and nervous fibers were identified in the lateral and ventro-medial hypothalamus. OXA, OXB, and OX2R ir cells were found in the mucosa and glands of the stomach and in the mucosa of both the pyloric cecae and intestine. OX2R ir cells were localized in the mucosa layer of both the pyloric cecae and intestine. These immunohistochemical (IHC) results were confirmed via Western blotting. Antibodies against preproorexin (PPO) crossreacted with a band of &sim;16 kDa in the hypothalamus, stomach, pyloric cecae, and intestine. Antibodies against OX2R crossreacted with a band of &sim;38 kDa in the hypothalamus, pyloric cecae, and intestine. The presence and distribution of OXA, OXB, and OX2R ir cells in the hypothalamus and gastrointestinal tract did not appear to be affected by dietary oils. The presence of orexin system immunoreactive cells in the stomach, pyloric cecae, and intestine of rainbow trout, but not in the enteric nervous system, could suggest a possible role of these peptides as signaling of gastric emptying or endocrine modulation, implying a main local action played by orexins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been postulated that the neuropeptide, oxytocin, is involved in human-dog bonding. This may explain why dogs, compared to wolves, are such good performers on object choice tasks, which test their ability to attend to, and use, human social cues in order to find hidden food treats. The objective of this study was to investigate the effect of intranasal oxytocin administration, which is known to increase social cognition in humans, on domestic dogs' ability to perform such a task. We hypothesised that dogs would perform better on the task after an intranasal treatment of oxytocin. Sixty-two (31 males and 31 females) pet dogs completed the experiment over two different testing sessions, 5-15 days apart. Intranasal oxytocin or a saline control was administered 45 min before each session. All dogs received both treatments in a pseudo-randomised, counterbalanced order. Data were collected as scores out of ten for each of the four blocks of trials in each session. Two blocks of trials were conducted using a momentary distal pointing cue and two using a gazing cue, given by the experimenter. Oxytocin enhanced performance using momentary distal pointing cues, and this enhanced level of performance was maintained over 5-15 days time in the absence of oxytocin. Oxytocin also decreased aversion to gazing cues, in that performance was below chance levels after saline administration but at chance levels after oxytocin administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whilst there have been many studies in various species examining the effects of leptin on food intake, there is a paucity of data comparing responsiveness in the two sexes. We have, therefore, addressed this issue in sheep. Because this species shows seasonal variation in voluntary food intake (VFI), we also considered the possibility that there might be seasonal variation in the responsivity to leptin. Centrally administered leptin was relatively ineffective as a satiety factor in either sex during AUTUMN: In Spring, leptin had a profound inhibitory effect on VFI in the females, but only a slight effect in males. These data indicate that responsiveness to leptin depends on sex and also on season in animals that are substantially affected by photoperiod.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shohat-Ophir et&nbsp;al. (1) demonstrate a connection between sexual behaviour and ethanol consumption in male Drosophila flies, and how the neuropeptide F system regulates ethanol preference. Their results are rightly discussed only in a physiological context, but this has facilitated erroneous anthropomorphic interpretations by the media. Here we discuss the link between male sexual behaviour and ethanol consumption from an evolutionary perspective, providing a broader context to interpret their results.