235 resultados para Neuro-fuzzy

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Financial decision making mechanisms have not been identified. Using event-related fMRI without MR compatible switch which can be performed by all MRI system which has only Echo Planar Imaging (EPI) feature, we examined financial decision-making task with three risk levels in two participants. We saw activation regions differences between risk-seeking and risk-aversion selection in addition to larger activated regions in selection funding in comparison with no selection. Thus, consideration of anticipatory neural mechanisms may add predictive power for economic decision- making.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective. Humans have a limited ability to accurately and continuously analyse large amount of data. In recent times, there has been a rapid growth in patient monitoring and medical data analysis using smart monitoring systems. Fuzzy logic-based expert systems, which can mimic human thought processes in complex circumstances, have indicated potential to improve clinicians' performance and accurately execute repetitive tasks to which humans are ill-suited. The main goal of this study is to develop a clinically useful diagnostic alarm system based on fuzzy logic for detecting critical events during anaesthesia administration. Method. The proposed diagnostic alarm system called fuzzy logic monitoring system (FLMS) is presented. New diagnostic rules and membership functions (MFs) are developed. In addition, fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS), and clustering techniques are explored for developing the FLMS' diagnostic modules. The performance of FLMS which is based on fuzzy logic expert diagnostic systems is validated through a series of offline tests. The training and testing data set are selected randomly from 30 sets of patients' data. Results. The accuracy of diagnoses generated by the FLMS was validated by comparing the diagnostic information with the one provided by an anaesthetist for each patient. Kappa-analysis was used for measuring the level of agreement between the anaesthetist's and FLMS's diagnoses. When detecting hypovolaemia, a substantial level of agreement was observed between FLMS and the human expert (the anaesthetist) during surgical procedures. Conclusion. The diagnostic alarm system FLMS demonstrated that evidence-based expert diagnostic systems can diagnose hypovolaemia, with a substantial degree of accuracy, in anaesthetized patients and could be useful in delivering decision support to anaesthetists.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Healthcare plays an important role in promoting the general health and well-being of people around the world. The difficulty in healthcare data classification arises from the uncertainty and the high-dimensional nature of the medical data collected. This paper proposes an integration of fuzzy standard additive model (SAM) with genetic algorithm (GA), called GSAM, to deal with uncertainty and computational challenges. GSAM learning process comprises three continual steps: rule initialization by unsupervised learning using the adaptive vector quantization clustering, evolutionary rule optimization by GA and parameter tuning by the gradient descent supervised learning. Wavelet transformation is employed to extract discriminative features for high-dimensional datasets. GSAM becomes highly capable when deployed with small number of wavelet features as its computational burden is remarkably reduced. The proposed method is evaluated using two frequently-used medical datasets: the Wisconsin breast cancer and Cleveland heart disease from the UCI Repository for machine learning. Experiments are organized with a five-fold cross validation and performance of classification techniques are measured by a number of important metrics: accuracy, F-measure, mutual information and area under the receiver operating characteristic curve. Results demonstrate the superiority of the GSAM compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus helpful as a decision support system for medical practitioners in the healthcare practice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a combination of fuzzy standard additive model (SAM) with wavelet features for medical diagnosis. Wavelet transformation is used to reduce the dimension of high-dimensional datasets. This helps to improve the convergence speed of supervised learning process of the fuzzy SAM, which has a heavy computational burden in high-dimensional data. Fuzzy SAM becomes highly capable when deployed with wavelet features. This combination remarkably reduces its computational training burden. The performance of the proposed methodology is examined for two frequently used medical datasets: the lump breast cancer and heart disease. Experiments are deployed with a five-fold cross validation. Results demonstrate the superiority of the proposed method compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. Faster convergence but higher accuracy shows a win-win solution of the proposed approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nonlinear, noisy and outlier characteristics of electroencephalography (EEG) signals inspire the employment of fuzzy logic due to its power to handle uncertainty. This paper introduces an approach to classify motor imagery EEG signals using an interval type-2 fuzzy logic system (IT2FLS) in a combination with wavelet transformation. Wavelet coefficients are ranked based on the statistics of the receiver operating characteristic curve criterion. The most informative coefficients serve as inputs to the IT2FLS for the classification task. Two benchmark datasets, named Ia and Ib, downloaded from the brain-computer interface (BCI) competition II, are employed for the experiments. Classification performance is evaluated using accuracy, sensitivity, specificity and F-measure. Widely-used classifiers, including feedforward neural network, support vector machine, k-nearest neighbours, AdaBoost and adaptive neuro-fuzzy inference system, are also implemented for comparisons. The wavelet-IT2FLS method considerably dominates the comparable classifiers on both datasets, and outperforms the best performance on the Ia and Ib datasets reported in the BCI competition II by 1.40% and 2.27% respectively. The proposed approach yields great accuracy and requires low computational cost, which can be applied to a real-time BCI system for motor imagery data analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper introduces an automated medical data classification method using wavelet transformation (WT) and interval type-2 fuzzy logic system (IT2FLS). Wavelet coefficients, which serve as inputs to the IT2FLS, are a compact form of original data but they exhibits highly discriminative features. The integration between WT and IT2FLS aims to cope with both high-dimensional data challenge and uncertainty. IT2FLS utilizes a hybrid learning process comprising unsupervised structure learning by the fuzzy c-means (FCM) clustering and supervised parameter tuning by genetic algorithm. This learning process is computationally expensive, especially when employed with high-dimensional data. The application of WT therefore reduces computational burden and enhances performance of IT2FLS. Experiments are implemented with two frequently used medical datasets from the UCI Repository for machine learning: the Wisconsin breast cancer and Cleveland heart disease. A number of important metrics are computed to measure the performance of the classification. They consist of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. Results demonstrate a significant dominance of the wavelet-IT2FLS approach compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus useful as a decision support system for clinicians and practitioners in the medical practice. copy; 2015 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper introduces an approach to classify EEG signals using wavelet transform and a fuzzy standard additive model (FSAM) with tabu search learning mechanism. Wavelet coefficients are ranked based on statistics of the Wilcoxon test. The most informative coefficients are assembled to form a feature set that serves as inputs to the tabu-FSAM. Two benchmark datasets, named Ia and Ib, downloaded from the brain-computer interface (BCI) competition II are employed for the experiments. Classification performance is evaluated using accuracy, mutual information, Gini coefficient and F-measure. Widely-used classifiers, including feedforward neural network, support vector machine, k-nearest neighbours, ensemble learning Adaboost and adaptive neuro-fuzzy inference system, are also implemented for comparisons. The proposed tabu-FSAM method considerably dominates the competitive classifiers, and outperforms the best performance on the Ia and Ib datasets reported in the BCI competition II.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An approach to EEG signal classification for brain-computer interface (BCI) application using fuzzy standard additive model is introduced in this paper. The Wilcoxon test is employed to rank wavelet coefficients. Top ranking wavelets are used to form a feature set that serves as inputs to the fuzzy classifiers. Experiments are carried out using two benchmark datasets, Ia and Ib, downloaded from the BCI competition II. Prevalent classifiers including feedforward neural network, support vector machine, k-nearest neighbours, ensemble learning Adaboost and adaptive neuro-fuzzy inference system are also implemented for comparisons. Experimental results show the dominance of the proposed method against competing approaches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a novel design of interval type-2 fuzzy logic systems (IT2FLS) by utilizing the theory of extreme learning machine (ELM) for electricity load demand forecasting. ELM has become a popular learning algorithm for single hidden layer feed-forward neural networks (SLFN). From the functional equivalence between the SLFN and fuzzy inference system, a hybrid of fuzzy-ELM has gained attention of the researchers. This paper extends the concept of fuzzy-ELM to an IT2FLS based on ELM (IT2FELM). In the proposed design the antecedent membership function parameters of the IT2FLS are generated randomly, whereas the consequent part parameters are determined analytically by the Moore-Penrose pseudo inverse. The ELM strategy ensures fast learning of the IT2FLS as well as optimality of the parameters. Effectiveness of the proposed design of IT2FLS is demonstrated with the application of forecasting nonlinear and chaotic data sets. Nonlinear data of electricity load from the Australian National Electricity Market for the Victoria region and from the Ontario Electricity Market are considered here. The proposed model is also applied to forecast Mackey-glass chaotic time series data. Comparative analysis of the proposed model is conducted with some traditional models such as neural networks (NN) and adaptive neuro fuzzy inference system (ANFIS). In order to verify the structure of the proposed design of IT2FLS an alternate design of IT2FLS based on Kalman filter (KF) is also utilized for the comparison purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This is an open access article under the CC BY-NC-ND license.Neuro-Fuzzy Systems (NFS) are computational intelligence tools that have recently been employed in hydrological modeling. In many of the common NFS the learning algorithms used are based on batch learning where all the parameters of the fuzzy system are optimized off-line. Although these models have frequently been used, there is a criticism on such learning process as the number of rules are needed to be predefined by the user. This will reduce the flexibility of the NFS architecture while dealing with different data with different level of complexity. On the other hand, online or local learning evolves through local adjustments in the model as new data is introduced in sequence. In this study, dynamic evolving neural fuzzy inference system (DENFIS) is used in which an evolving, online clustering algorithm called the Evolving Clustering Method (ECM) is implemented. ECM is an online, maximum distance-based clustering method which is able to estimate the number of clusters in a data set and find their current centers in the input space through its fast, one-pass algorithm. The 10-minutes rainfall-runoff time series from a small (23.22 km2) tropical catchment named Sungai Kayu Ara in Selangor, Malaysia, was used in this study. Out of the 40 major events, 12 were used for training and 28 for testing. Results obtained by DENFIS were then compared with the ones obtained by physically-based rainfall-runoff model HEC-HMS and a regression model ARX. It was concluded that DENFIS results were comparable to HEC-HMS and superior to ARX model. This indicates a strong potential for DENFIS to be used in rainfall-runoff modeling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three nonlinear approaches to model the nonlinear pneumatic servo- drive are presented. The three nonlinear approaches are: (1) the multi input-single output (MISO) approach, which describes the single input-single output (SISO) nonlinear plant using a MISO linear representation which allows replacement of the nonlinear analysis by a linear one without approximation, and is studied in both time and frequency domains; (2) piecewise linearization, which systematically replaces, using artificial neural network, the nonlinear surface representing the plant in the hyper input-output space by a number of linear planes that are continuous over the boundaries between them; and (3) Adaptive Neuro-Fuzzy Inference System (ANFIS), in which the fuzzy rules are placed in a neural network structure, and which consequently utilizes neural networks learning rules to systematically tune the nonlinear fuzzy model. The superiority of these nonlinear models over the best model that can be developed using linear identification techniques is shown.