9 resultados para Near infrared luminescence

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Near-infrared laser-based microsurgery is promising for noninvasive cancer treatment. To make it a safe technique, a therapeutic process should be controllable and energy efficient, which requires the cancer cells to be identifiable and observable. In this work, for the first time we use a miniaturized nonlinear optical endomicroscope to achieve microtreatment of cancer cells labeled with gold nanorods. Due to the high two-photon-excited photoluminescence of gold nanorods, HeLa cells inside a tissue phantom up to 250 μm deep can be imaged by the nonlinear optical endomicroscope. This facilitates microsurgery of selected cancer cells by inducing instant damage through the necrosis process, or by stopping cell proliferation through the apoptosis process. The results indicate that a combination of nonlinear endomicroscopy with gold nanoparticles is potentially viable for minimally invasive cancer treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peptides have been used as components in biological analysis and fabrication of novel biosensors for a number of reasons, including mature synthesis protocols, diverse structures and as highly selective substrates for enzymes. Bio-conjugation strategies can provide an efficient way to convert interaction information between peptides and analytes into a measurable signal, which can be used for fabrication of novel peptide-based biosensors. Many sensitive fluorophores can respond rapidly to environmental changes and stimuli manifest as a change in spectral characteristics, hence environmentally-sensitive fluorophores have been widely used as signal markers to conjugate to peptides to construct peptide-based molecular sensors. Additionally, nanoparticles, fluorescent polymers, graphene and near infrared dyes are also used as peptide-conjugated signal markers. On the other hand, peptides may play a generalist role in peptide-based biosensors. Peptides have been utilized as bio-recognition elements to bind various analytes including proteins, nucleic acid, bacteria, metal ions, enzymes and antibodies in biosensors. The selectivity of peptides as an enzymatic substrate has thus been utilized to construct enzyme sensors or enzyme-activity sensors. In addition, progress on immobilization and microarray techniques of peptides has facilitated the progress and commercial application of chip-based peptide biosensors in clinical diagnosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is the first ever attempt to combine anti-cancer therapeutic effects of emerging anticancer biodrug bovine lactoferrin (bLf), and multimodal imaging efficacy of Fe3O4 nanoparticles (NPs) together, as a saturated Fe3O4-bLf. For cancer stem cell specific uptake of nanocapsules/nanocarriers (NCs), Fe3O4-bLf was encapsulated in alginate enclosed chitosan coated calcium phosphate (AEC-CP) NCs targeted (Tar) with locked nucleic acid (LNA) modified aptamers against epithelial cell adhesion molecule (EpCAM) and nucleolin markers. The nanoformulation was fed orally to mice injected with triple positive (EpCAM, CD133, CD44) sorted colon cancer stem cells in the xenograft cancer stem cell mice model. The complete regression of tumor was observed in 70% of mice fed on non-targeted (NT) NCs, with 30% mice showing tumor recurrence after 30 days, while only 10% mice fed with Tar NCs showed tumor recurrence indicating a significantly higher survival rate. From tumor tissue analyses of 35 apoptotic markers, 55 angiogenesis markers, 40 cytokines, 15 stem cell markers and gene expression studies of important signaling molecules, it was revealed that the anti-cancer mechanism of Fe3O4-bLf was intervened through TRAIL, Fas, Fas-associated protein with death domain (FADD) mediated phosphorylation of p53, to induce activation of second mitochondria-derived activator of caspases (SMAC)/DIABLO (inhibiting survivin) and mitochondrial depolarization leading to release of cytochrome C. Induction of apoptosis was observed by inhibition of the Akt pathway and activation of cytokines released from monocytes/macrophages and dendritic cells (interleukin (IL) 27, keratinocyte chemoattractant (KC)). On the other hand, the recurrence of tumor in AEC-CP-Fe3O4-bLf NCs fed mice mainly occurred due to activation of alternative pathways such as mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK) and Wnt signaling leading to an increase in expression of survivin, survivin splice variant (survivin 2B) and other anti-apoptotic proteins Bad, Bcl-2 and XIAP. Apart from the promising anti-cancer efficacy and the exceptional tumor targeting ability observed by multimodal imaging using near-infrared (NIR) imaging, magnetic resonance imaging (MRI) and computerized tomographic (CT) techniques, these NCs also maintained the immunomodulatory benefits of bLf as they were able to increase the RBC, hemoglobin, iron calcium and zinc levels in mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to spatiotemporally identify the formation of specific anionic species, or track changes in their concentration inside living systems, is of critical importance in deciphering their exact biological roles and effects. The development of probes (also called bioimaging agents and intracellular sensors) to achieve this goal has become a rapidly growing branch of supramolecular chemistry. In this critical review the challenges specific to the task are identified and for a select range of small anions of environmental and biological relevance (fluoride, chloride, iodide, cyanide, pyrophosphate, bicarbonate, hydrosulphide, peroxynitrite, hypochlorite and hypobromite) a comprehensive overview of the currently available in vitro and in vivo probes is provided.