10 resultados para Natural infection

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pathogens have been hypothesized to play a major role in host diversity and speciation. Susceptibility of hybrid hosts to pathogens is thought to be a common phenomenon that could promote host population divergence and subsequently speciation. However, few studies have tested for pathogen infection across animal hybrid zones while testing for codivergence of the pathogens in the hybridizing host complex. Over 8 y, we studied natural infection by a rapidly evolving single-strand DNA virus, beak and feather diseases virus (BFDV), which infects parrots, exploiting a host-ring species complex (Platycercus elegans) in Australia. We found that host subspecies and their hybrids varied strikingly in both BFDV prevalence and load: both hybrid and phenotypically intermediate subspecies had lower prevalence and load compared with parental subspecies, while controlling for host age, sex, longitude and latitude, as well as temporal effects. We sequenced viral isolates throughout the range, which revealed patterns of genomic variation analogous to Mayr's ring-species hypothesis, to our knowledge for the first time in any host-pathogen system. Viral phylogeny, geographic location, intraspecific host density, and parrot community diversity and composition did not explain the differences in BFDV prevalence or load between subpopulations. Overall, our analyses suggest that functional host responses to infection, or force of infection, differ between subspecies and hybrids. Our findings highlight the role of host hybridization and clines in altering host-pathogen interactions, dynamics that can have important implications for models of speciation with gene flow, and offer insights into how pathogens may adapt to diverging host populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potassium phosphonate (phosphite) is widely used in the management of Phytophthora diseases in agriculture, horticulture and natural environments. The Austral grass tree, Xanthorrhoea australis, a keystone species in the dry sclerophyll forests of southern Australia, is susceptible to Phytophthora cinnamomi, but is protected by applications of phosphite. We examined the effect of phosphite application on the infection of X. australis seedlings and cell suspension cultures by zoospores of P. cinnamomi. Phosphite induced more intense cellular responses to pathogen challenge and suppressed pathogen ingress in both seedlings and cell cultures. In untreated X. australis seedlings, hyphal growth was initially intercellular, became intracellular 24 h after inoculation, and by 48 h had progressed into the vascular tissue. In phosphite-treated seedlings, growth of P. cinnamomi remained intercellular and was limited to the cortex, even at 72 h after inoculation. The cell membrane retracted from the cell wall and phenolic compounds and electron dense substances were deposited around the wall of infected and neighbouring cells. Suspension cells were infected within 6 h of inoculation. Within 24 h of inoculation, untreated cells were fully colonised, had collapsed cytoplasm and died. The protoplast of phosphite-treated suspension cells collapsed within 12 h of inoculation, and phenolic material accumulated in adjacent, uninfected cells. No anatomical response to phosphite treatment was observed before infection of plant tissues, suggesting that the phosphite-associated host defence response is induced following pathogen challenge. Anatomical changes provide evidence that phosphite stimulates the host defence system to respond more effectively to pathogen invasion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wild waterfowl populations form a natural reservoir of Avian Influenza (AI) virus, and fears exist that these birds may contribute to an AI pandemic by spreading the virus along their migratory flyways. Observational studies suggest that individuals infected with AI virus may delay departure from migratory staging sites. Here, we explore the epidemiological dynamics of avian influenza virus in a migrating mallard (Anas platyrhynchos) population with a specific view to understanding the role of infection-induced migration delays on the spread of virus strains of differing transmissibility. We develop a host-pathogen model that combines the transmission dynamics of influenza with the migration, reproduction and mortality of the host bird species. Our modeling predicts that delayed migration of individuals influences both the timing and size of outbreaks of AI virus. We find that (1) delayed migration leads to a lower total number of cases of infection each year than in the absence of migration delay, (2) when the transmission rate of a strain is high, the outbreak starts at the staging sites at which birds arrive in the early part of the fall migration, (3) when the transmission rate is low, infection predominantly occurs later in the season, which is further delayed when there is a migration delay. As such, the rise of more virulent AI strains in waterfowl could lead to a higher prevalence of infection later in the year, which could change the exposure risk for farmed poultry. A sensitivity analysis shows the importance of generation time and loss of immunity for the effect of migration delays. Thus, we demonstrate, in contrast to many current transmission risk models solely using empirical information on bird movements to assess the potential for transmission, that a consideration of infection-induced delays is critical to understanding the dynamics of AI infection along the entire flyway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been assumed that R5 and X4 HIV utilize similar strategies to support viral cDNA synthesis post viral entry. In this study, we provide evidence to show that R5 and X4 HIV have distinct requirements for host cell uracil DNA glycosylase (UNG2) during the early stage of infection. UNG2 has been previously implicated in HIV infection, but its precise role remains controversial. In this study we show that, although UNG2 is highly expressed in different cell lines, UNG2 levels are low in the natural host cells of HIV. Short interfering RNA knockdown of endogenous UNG2 in primary cells showed that UNG2 is required for R5 but not X4 HIV infection and that this requirement is bypassed when HIV enters the target cell via vesicular stomatitis virus envelope-glycoprotein-mediated endocytosis. We also show that short interfering RNA knockdown of UNG2 in virus-producing primary cells leads to defective R5 HIV virions that are unable to complete viral cDNA synthesis. Quantitative PCR analysis revealed that endogenous UNG2 levels are transiently up-regulated post HIV infection, and this increase in UNG2 mRNA is ∼10–20 times higher in R5 versus X4 HIV-infected cells. Our data show that both virion-associated UNG2 and HIV infection-induced UNG2 expression are critical for reverse transcription during R5 but not X4 HIV infection. More importantly, we have made the novel observation that R5 and X4 HIV have distinct host cell factor requirements and differential capacities to induce gene expression during the early stages of infection. These differences may result from activation of distinct signaling cascades and/or infection of divergent T-lymphocyte subpopulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatitis is a major health related disease spread worldwide with frequent occurrence of epidemics. It is a zoonotic disease which leads to jaundice, anorexia, malaise and death. Although, vaccines have been developed against hepatitis A and hepatitis B, it is a challenge to generate vaccines against other prevalent forms of hepatitis which are equally harmful and spread worldwide. Natural products that are obtained from living organisms and found freely in nature have proven to be effective against several types of hepatitis due to presence of pharmacologically important bioactive compounds. Since they are natural products they do not cause much harm to body and can be easily applied or consumed. Our main focus is on hepatitis E virus (HEV) which is an opportunistic pathogen and leads to acute jaundice. This virus is mainly present in developing countries with poor sanitation facilities and effects individuals having weak immune response, mainly children, old people, organ transplant patients and pregnant women. HEV infection makes the patient more susceptible to infections from other viruses as well as HIV. In this review, we discussed about the natural protein known as lactoferrin which is isolated from milk colostrum and extracts of some medicinal plants that have proven to be effective against various forms of hepatitis. Such form of natural therapies forms the basis of modern medicine and major pharmaceutical discoveries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Koalas (Phascolarctos cinereus), an iconic Australian marsupial, are being heavily impacted by the spread of Chlamydia pecorum, an obligate intracellular bacterial pathogen. Koalas vary in their response to this pathogen, with some showing no symptoms, while others suffer severe symptoms leading to infertility, blindness or death. Little is known about the pathology of this disease and the immune response against it in this host. Studies have demonstrated that natural killer (NK) cells, key components of the innate immune system, are involved in the immune response to chlamydial infections in humans. These cells can directly lyse cells infected by intracellular pathogens and their ability to recognise these infected cells is mediated through NK receptors on their surface. These are encoded in two regions of the genome, the leukocyte receptor complex (LRC) and the natural killer complex (NKC). These two families evolve rapidly and different repertoires of genes, which have evolved by gene duplication, are seen in different species. METHODS: In this study we aimed to characterise genes belonging to the NK receptor clusters in the koala by searching available koala transcriptomes using a combination of search methods. We developed a qPCR assay to quantify relative expression of four genes, two encoded within the NK receptor cluster (CLEC1B, CLEC4E) and two known to play a role in NK response to Chalmydia in humans (NCR3, PRF1). RESULTS: We found that the NK receptor repertoire of the koala closely resembles that of the Tasmanian devil, with minimal genes in the NKC, but with lineage specific expansions in the LRC. Additional genes important for NK cell activity, NCR3 and PRF1, were also identified and characterised. In a preliminary study to investigate whether these genes are involved in the koala immune response to infection by its chlamydial pathogen, C. pecorum, we investigated the expression of four genes in koalas with active chlamydia infection, those with past infection and those without infection using qPCR. This analysis revealed that one of these four, CLEC4E, may be upregulated in response to chlamydia infection. CONCLUSION: We have characterised genes of the NKC and LRC in koalas and have discovered evidence that one of these genes may be upregulated in koalas with chlamydia, suggesting that these receptors may play a role in the immune response of koalas to chlamydia infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Migratory animals are simultaneously challenged by the physiological demands of long-distance movements and the need to avoid natural enemies including parasites and pathogens. The potential for animal migrations to disperse pathogens across large geographic areas has prompted a growing body of research investigating the interactions between migration and infection. However, the phenomenon of animal migration is yet to be incorporated into broader theories in disease ecology. Because migrations may expose animals to a greater number and diversity of pathogens, increase contact rates between hosts, and render them more susceptible to infection via changes to immune function, migration has the potential to generate both "superspreader species" and infection "hotspots". However, migration has also been shown to reduce transmission in some species, by facilitating parasite avoidance ("migratory escape") and weeding out infected individuals ("migratory culling"). This symposium was convened in an effort to characterize more broadly the role that animal migrations play in the dynamics of infectious disease, by integrating a range of approaches and scales across host taxa. We began with questions related to within-host processes, focusing on the consequences of nutritional constraints and strenuous movement for individual immune capability, and of parasite infection for movement capacity. We then scaled-up to between-host processes to identify what types, distances, or patterns of host movements are associated with the spread of infectious agents. Finally, we discussed landscape-scale relationships between migration and infectious disease, and how these may be altered as a result of anthropogenic changes to climate and land use. We are just beginning to scratch the surface of the interactions between infection and animal migrations; yet, with so many migrations now under threat, there is an urgent need to develop a holistic understanding of the potential for migrations to both increase and reduce infection risk.