28 resultados para Nanocomposites. Nanographite. Epoxy. Expanded graphite. Microwave

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interfacial interaction of composites dominates the properties of polymeric/inorganic nanocomposites. Herein, epoxy and hydroxyl groups are introduced into the natural rubber (NR) molecular chains to anchor oxygenous functional groups on the surface of graphene oxide (GO) sheets and therefore enhance the interfacial interaction between GO and rubber. From the morphological observation and interaction analysis, it is found that epoxidized natural rubber (ENR) latex particles are assembled onto the surfaces of GO sheets by employing hydrogen bonding interaction as driving force. This self-assembly depresses restacking and agglomeration of GO sheets and leads to homogenous dispersion of GO within ENR matrix. The formation of hydrogen bonding interface between ENR and GO demonstrates a significant reinforcement for the ENR host. Compared with those of pure ENR, the composite with 0.7 wt% GO loading receives 87% increase in tensile strength and 8.7 fold increase in modulus at 200% elongation after static in-situ vulcanization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of nano-size rutile filler on the microwave dielectric properties of PTFE composites were investigated and the results were compared with that of micron size rutile filled composites. Nano-size rutile powder was prepared through sol&ndash;gel route and the filled PTFE composites were fabricated through SMECH process. Different characterization techniques such as powder X-ray diffraction, SEM, BET, TEM and TG/DSC were employed to analyze the nature of ceramic filler. The dielectric properties of filled composites were evaluated at microwave frequency region using waveguide cavity perturbation technique. Different theoretical models have been employed to predict the variation of dielectric constant with respect to filler loading. The moisture absorption characteristics of nano-rutile filled PTFE composites were measured as per IPC-TM-650 2.6.2 standards. Composites show high dielectric constant at X-band frequency region with relatively high loss tangent compared to micron size counterpart.<br />

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigated the structure-property relationships of epoxy nanocomposites when processing the materials under various conditions. A sonication technique, rapid heating rate and mechanical vibration during curing facilitated the dispersion of nanoclay in an epoxy resin. This led to the successful manufacture of fibre reinforced nanocomposites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the effect of both the mixing technique and heating rate during cure on the dispersion of montmorillonite (MMT) clay in an epoxy resin. The combination of sonication and using a 10. &Acirc;&deg;C/min heating rate during cure was found to facilitate the dispersion of nanoclay in epoxy resin. These processing conditions provided a synergistic effect, making it possible for polymer chains to penetrate in-between clay galleries and detach platelets from their agglomerates. As the degree of dispersion was enhanced, the flexural modulus and strength properties were found to decrease by 15% and 40%, respectively. This is thought to be due to individual platelets fracturing in the nanocomposite. Complementary techniques including X-ray diffraction (XRD), small angle X-ray scattering (SAXS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and optical microscopy were essential to fully characterise localised and spatial regions of the clay morphologies.<br />

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transient heat conduction in a functionally graded graphite/polymer nanocomposite (FGN) plate is analyzed using finite element method (FEM). Stepwise gradient structure consisted of four different nanocomposite layers with 0, 5, 10 and 20 wt% of graphite. Thermal conductivity and specific heat capacity of the individual layers were determined using C-Therm TCi Thermal Conductivity Analyzer (Canada) in temperature range of -20 to 100 &deg;C. Temperature history and temperature distribution across the thickness of the plate with two different configurations for two positive and negative temperature gradients are presented. <br />

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synthetic graphite&ndash;phenolic nanocomposites were designed and synthesized with a compositional gradient which is shown to influence transient temperature fields during rapid temperature changes. Such nanocomposites were fabricated using a compression moulding technique, and thermal conductivity and heat capacity of nanocomposites were experimentally determined using a modified transient plane source technique over a wide temperature range from 253.15 to 373.15 K. The effects of four compositional gradient configurations on the transient temperature field across the thickness of a nanocomposite plate, at a high imposed temperature, was investigated. The transient time and temperature fields in nanocomposite structures were highly affected by the compositional gradient configurations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study the optimization design, fabrication and characterization of synthetic graphite/phenolic nanocomposites are performed. The composition of synthetic graphite/phenolic nanocomposites was controlled across the thickness by stacking eight homogeneous layers containing 0, 5, 10, and 20wt% synthetic graphite in different sequences. Four compositional gradient patterns, as well as a homogenous nanocomposite, with the same geometry and synthetic graphite content, were fabricated to investigate the optimized design for thermomechanical properties. Results show that nanocomposites with a high concentration of synthetic graphite on the surfaces and neat resin at the center have the best thermomechanical and viscoelastic properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Novel magnetite-carbon nanofiber hybrids (denoted by Fe<inf>3</inf>O<inf>4</inf>@CNFs) have been developed by coating carbon nanofibers (CNFs) with magnetite nanoparticles in order to align CNFs in epoxy using a relatively weak magnetic field. Experimental results have shown that a weak magnetic field (&sim;mT) can align these newly-developed nanofiber hybrids to form a chain-like structure in the epoxy resin. Upon curing, the epoxy nanocomposites containing the aligned Fe<inf>3</inf>O<inf>4</inf>@CNFs show (i) greatly improved electrical conductivity in the alignment direction and (ii) significantly higher fracture toughness when the Fe<inf>3</inf>O<inf>4</inf>@CNFs are aligned normal to the crack surface, compared to the nanocomposites containing randomly-oriented Fe<inf>3</inf>O<inf>4</inf>@CNFs. The mechanisms underpinning the significant improvements in the fracture toughness have been identified, including interfacial debonding, pull-out, crack bridging and rupture of the Fe<inf>3</inf>O<inf>4</inf>@CNFs, and plastic void growth in the polymer matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is an increasing demand for high performance composites with enhanced mechanical and electrical properties. Carbon nanofibres offer a promising solution but their effectiveness has been limited by difficulty in achieving directional alignment. Here we report the use of an alternating current (AC) electric field to align carbon nanofibres in an epoxy. During the cure process of an epoxy resin, carbon nanofibres (CNFs) are observed to rotate and align with the applied electric field, forming a chain-like structure. The fracture energies of the resultant epoxy nanocomposites containing different concentrations of CNFs (up to 1.6wt%) are measured using double cantilever beam specimens. The results show that the addition of 1.6wt% of aligned CNFs increases the electrical conductivity of such nanocomposites by about seven orders of magnitudes to 10&lt;sup&gt;-2&lt;/sup&gt;S/m and increases the fracture energy, G&lt;inf&gt;Ic&lt;/inf&gt;, by about 1600% from 134 to 2345J/m&lt;sup&gt;2&lt;/sup&gt;. A modelling technique is presented to quantify this major increase in the fracture energy with aligned CNFs. The results of this research open up new opportunities to create multi-scale composites with greatly enhanced multifunctional properties.