8 resultados para Nano-devices

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin-orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Applications of LSPR nano-particles in various areas of solar cells, LSPR biosensors, and SERS biosensors, based on interaction of light with noble metal nano-particles is increasing. Therefore, design and nano-fabrication of the LSPR devices is a key step in developing such applications. Design of nano-structures with desirable spectral properties using numerical techniques such as finite difference time domain (FDTD) is the first step in this work. A new structure called nano-sinusoid, satisfying the some desirable LSPR characteristics, is designed and simulated using the FDTD method. In the next stage, analytical method of electro static eigen mode method is used to validate the simulation results. The, nano-fabrications method of electron beam lithography (EBL) is implemented to fabricate the proposed profile with high precision. Finally, atomic force microscopy (AFM) is used to investigate the shape of the fabricated nano-particles, and the dark field microscopy is employed to demonstrate the particular spectral characteristics of the proposed nano-sinusoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work lithium modified silica (Li-SiO2) nano-particles were synthesized and used as a single ion lithium conductor source in gel electrolytes. It was found that Li-SiO2 exhibited good compatibility with DMSO, DMA/EC (a mixture of N,N-dimethyl acetamide and ethylene carbonate) and the ionic liquid, N-methyl-N-propyl pyrrolidinium bis(trifluoromethylsulfonyl) amide ([C3mpyr][NTf2]). Several gel electrolytes based on Li-SiO2 were obtained. These gel electrolytes were investigated by DSC, solid state NMR, conductivity measurements and cyclic voltammetry. Conductivities as high as 10−3 S/cm at room temperature were observed in these nano-particle gel electrolytes. The results of electrochemical tests showed that some of these materials were promising for using as lithium conductive electrolytes in electrochemical devices, with high lithium cycling efficiency evident.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Localized surface plasmon resonance (LSPR) biosensors are employed to detect target biomolecules which have particular resonance wavelengths. Accordingly, tunability of the LSPR wavelength is essential in designing LSPR devices. LSPR devices employing silver nano-particles present better efficiencies than those using other noble metals such as gold; however, silver nano-particles are easily oxidized when they come in contact with liquids, which is inevitable in biosensing applications. To attain both durability and tunabilty in a LSPR biosensor, this paper proposes alumina (AL2O3) capped silver nano-disks. It is shown that through controlling the thickness of the cap, the LSPR resonance frequency can be finely tuned over a wide range; and moreover, the cap protects silver nano-particles from oxidation and high temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel nano-sinusoid particle to be employed in enhanced localized surface plasmon resonance (LSPR) bio-sensing devices. Numerical investigations are carried out to demonstrate advantages offered by the proposed nano-particle on LSPR enhancement over other nano-particles including noble nano-triangles and nano-diamonds. Although nano-triangles exhibit high concentration of the electric field near their tips, when illuminated with a light polarized along the tip axis, they present only one hot spot at the vertex along the polarization direction. To create a structure with two hot spots, which is desired in bio-sensing applications, two nano-triangles can be put back-to-back. Therefore, a nano-diamond particle is obtained which exhibits two hot spots and presents higher enhancements than nano-triangles for the same resonant wavelength. The main drawback of the nano-diamonds is the fluctuation in their physical size-plasmon spectrum relationships, due to a high level of singularity as the result for their four sharp tip points. The proposed nano-sinusoid overcomes this disadvantage while maintaining the benefits of having two hot spots and high enhancements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel sinusoidal shape nano-particle employed in localized surface plasmon resonance (LSPR) devices. Numerical modeling demonstrates advantages offered by the proposed nano-sinusoid on LSPR enhancement against other nano-particles including noble nano-triangles and nano-diamonds. Although nano-triangles exhibit high concentration of the electric field near their tips, when illuminated with a light polarized along the tip axis, they present only one hot spot at the vertex along the polarization direction. To create a structure with two hot spots, which is desired in bio-sensing applications, two nano-triangles can be put back-to-back. Therefore, a nano-diamond particle is obtained which exhibits two hot spots and presents higher enhancements than nano-triangles for the same resonant wavelength. The main drawback of the nano-diamonds is the fluctuation in their physical size-plasmon spectrum relationships, due to a high level of singularity as the result for their four sharp tip points. The proposed nano-sinusoid overcomes this disadvantage while maintaining the benefits of having two hot spots and high enhancements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new nano-sinusoid shape has recently been proposed, which offers the advantage of more resonance wavelength tunability than that offered by other sharp-tip nano-particles. In this paper, a one-dimensional (1D) chain of the nano-sinusoids is modelled, and results are compared with those describing chains of nano-triangles and nano-diamonds. It is demonstrated that the chain of nano-sinusoids provides more enhancement at hot spots than other examined nano-particle shapes. This enhancement is analytically quantified using the coupling constant values used in the electrostatic eigenmode method for analytically solving Maxwell's equations for the nano-plasmonic devices. In addition, investigating LSPR spectrum of two-dimensional (2D) arrays of NPs demonstrates existence of enhanced surface electric fields on hot spots of the outer rows of the array.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermogalvanic cells are capable of converting waste heat (generated as a by-product of almost all human activity) to electricity. These devices may alleviate the problems associated with the use of fossil fuels to meet the world's current demand for energy. This review discusses the developments in thermogalvanic systems attained through the use of nano-carbons as the electrode materials. Advances in cell design and electrode configuration that improve performance of these thermo converters and make them applicable in a variety of environments are also summarized. It is the aim of this review to act as a channel for further developments in thermogalvanic cell design and electrode engineering.