11 resultados para Nano films

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A nano-sized Mg2Al layered double hydroxide (LDH) was used for encapsulating an organic UV absorber, 2-hydroxy-4- methoxybenzeophenone-5-sulfonic acid (HMBS), to produce HMBS@LDH hybrid nano-platelets. Upon dispersing this organic-inorganic hybrid LDH into ethylene-vinyl alcohol copolymer (EVOH) for film casting, a thin polymer
nanocomposite film that is UV opaque but highly transparent to visible light (higher than 90%) was formed. Thermogravimetry (TG) analysis confirmed that the intercalation of HMBS into LDH considerably increased the thermal stability of HMBS. Such an improvement was attributed to the strong guest-host interaction between the HMBS anions and the LDH layers. Also, the nanocomposite films were flexible and had good mechanical properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microcompression tests were performed to determine the mechanical behavior of nano-crystalline Cu/Fe and Fe/Cu multilayers, as well as monolithic Cu and Fe thin films. The results show that the micropillars of pure Cu thin film bulge out under large compressive strains without failure, while those of pure Fe thin film crack near the top at low compressive strains followed by shear failure. For Cu/Fe and Fe/Cu multilayers, the Cu layers accommodate the majority of plastic deformation, and the geometry constraints imposed by Fe layers exaggerates the bulging in the Cu layers. However, the existence of ductile Cu layers does not improve the overall ductility of Cu/Fe and Fe/Cu multilayers. Cracking in the Fe layers directly lead to the failure of the multilayer micropillars, although the Cu layers have very good ductility. The results imply that suppressing the cracking of brittle layers is more important than simply adding ductile layers for improving the overall ductility of metallic multilayers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a facile and effective method for controlling the surface hydrophobicity of polyimide films from sticky to superhydrophobic properties by tailoring their topographies. Nanostructured silver layers were produced on polyimide films by treatment with aqueous KOH and AgNO3, followed by thermal treatment at 200 degrees C or higher temperatures. Further modification of the gold-coated silver layers with n-dodecanethiol led to hydrophobic surfaces. Different morphologies of the silver layers at the micro- and nano-meter scales, which result in the variety of hydrophobicity, can be tailored by controlling the thermal treatment temperature. Surfaces prepared at 320 degrees C showed a sticky property that water drops did not slide off even when the sample was held upside down. Superhydrophobic surfaces were obtained when the temperature was above 340 degrees C. A remarkable superhydrophobicity, as evidenced by a very large water contact angle of 162 degrees and a very small sliding angle of 7 degrees, was achieved by heating the modified polyimide films at 360 degrees C. This is also the first example for superhydrophobic modification of polyimide films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The useful life of many outdoor textile products is limited by degradation caused by exposure to sunlight, in particular by the ultra violet component (below 400 nm). The degradation results in fading of colours and also loss of physical properties, such as tear strength and abrasion resistance. Degradation can be decreased with UV absorbers, often used in conjunction with antioxidants or free radical quenchers. The protection afforded by these organic compounds is, however, limited as they are ultimately destroyed by the UV radiation they absorb.
An alternative approach is to coat fabrics with a polymer containing an inorganic UV absorber, such as zinc oxide. The inherent stability of zinc oxide would be expected to provide a protective effect over a much longer period than can be achieved with an organic UV absorber. A possible disadvantage of zinc oxide when applied in a polymer film is that absorption and scattering of visible light can produce hazy films and, hence, an unacceptable change in fabric appearance.
This poster paper examines the possibility of using nano particles of zinc oxide dispersed in acrylic polymers for protecting dyed polyester fabrics against sunlight fading. Factors affecting both UV absorbance and film clarity will be discussed. The possibility will also be examined that the protective effect may be reduced in some circumstances by reactive oxygen species, generated by the interaction of UV with zinc oxide in the presence of air and water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 200°C for 10 days to form a nano-scale bainitic microstructure consisting of nanobainitic ferrite laths with high dislocation density and retained austenite films. The crystallographic analysis using TEM and EBSD revealed that the bainitic ferrite laths are close to the Nishiyama-Wassermann orientation relationship with the parent austenite. There was only one type of packet identified in a given transformed austenite grain. Each packet consisted of two different blocks having variants with the same habit plane, but different crystallographic orientations. The presence of fine C-rich clusters and Fe-C carbides with a wide range of compositions in bainitic ferrite was revealed by Three-dimensional Atom Probe Tomography (APT). The high carbon content of bainitic ferrite compared to the para-equilibrium level of carbon in ferrite, absence of segregation of carbon to the austenite/bainitic ferrite interface and absence of partitioning of substitutional elements between the retained austenite and bainitic ferrite were also found using APT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 200°C for 10 days to produce a nano-structured bainitic steel. The microstructure consisted of nanobainitic ferrite laths with a high dislocation density and retained austenite films having extensive twins. The crystallographic analysis using TEM and EBSD revealed that the bainitic ferrite laths are close to the Nishiyama-Wassermann orientation relationship with their parent austenite. There was only one type of packet identified in a given transformed austenite grain. Each packet consisted of two different blocks having variants with the same habit plane, but different crystallographic orientations. Atom Probe Tomography (APT) revealed that the carbon content of nanobainitic ferrite laths was much higher than expected from the para-equilibrium level. This was explained due to the long heat treatment time, which led to the formation of fine Fe-C clusters on areas with high dislocation densities in bainitic ferrite laths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm) as well as the sintering pressure (5–20 ton·m−2) and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen doped SnO2 polycrystalline nanostructures were produced from commercial SnO powders in a new system that combines a low-temperature plasma with heating. The method has the potential to improve the initial efficiency and the cycling performance of SnO2 anodes in Li-ion batteries. With this system, the temperature of the SnO to SnO2 conversion was lowered from 430 to 320 °C, up to 5 at% of doped nitrogen was detected and a nano-scale polycrystalline structure was observed in the product. Combining heat and low-pressure plasma is a promising approach for the production and treatment of enhanced energy storage materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2014 The Textile Institute. This study intends to enhance the functionality of titanium dioxide (TiO2) nanoparticles applied to wool fabrics under visible light. Herein, TiO2, TiO2/SiO2, TiO2/Metal, and TiO2/Metal/SiO2 nanocomposite sols were synthesized and applied to wool fabrics through a low-temperature sol–gel method. The impacts of three types of noble metals, namely gold (Au), platinum (Pt), and silver (Ag), on the photoefficiency of TiO2 and TiO2/SiO2 under visible light were studied. Different molar ratios of Metal toTiO2 (0.01, 0.1, 0.5, and 1%) were employed in synthesizing the sols. Photocatalytic efficiency of fabrics was analyzed through monitoring the removal of red wine stain and degradation of methylene blue under simulated sunlight and visible light, respectively. Also, the antimicrobial activity against Escherichia coli (E. coli) bacterium and the mechanical properties of fabrics were investigated. Through applying binary and ternary nanocomposite sols to fabrics, an enhanced visible-light-induced self-cleaning property was imparted to wool fabrics. It was concluded that the presence of silica and optimized amount of noble metals had a synergistic impact on boosting the photocatalytic and antimicrobial activities of coated samples. The fabrics were further characterized using attenuated total reflectance, energy-dispersive X-ray spectrometry, and scanning electron microscopy images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the physico-chemical effects occasioned by the cold plasma discharge (CPD) on the photo-decolorization of Reactive Orange 16 (RO16) by 3D fabrics (spacer fabrics) loaded with ZnO:TiO2 nano-photocatalysts (nphs) were optimized via response surface methodology (RSM). CPD was employed to improve the surface characteristics of the spacer fabrics for nphs loading. Surface morphology and color variation were studied utilizing scanning electron microscopy (SEM) and CIE-Lab system, respectively. The effect of CPD on the wetting ability of the spacer fabrics was examined using dynamic adsorption measurement (DAM). Also, X-ray fluorescence (XRF) was utilized to investigate the durability of the nphs on the spacer fabrics. All the experiments were implemented in a Box-Behnken design (BBD) with three independent variables (CPD treatment time, dye concentration and irradiation time) in order to optimize the decolorization of RO16. The anticipated values of the decolorization efficiency were found to be in excellent agreement with the experimental values (R2 = 0.9996, Adjusted R2 = 0.9992). The kinetic analysis demonstrated that the photocatalytic decolorization followed the Langmuir-Hinshelwood kinetic model. In conclusion, this heterogeneous photocatalytic process is capable of decolorizing and mineralizing azoic reactive dye in textile wastewater. Moreover, the results confirmed that RSM based on the BBD was a suitable method to optimize the operating conditions of RO16 degradation.