3 resultados para NUCLEAR TEMPERATURE

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reported 11B nuclear magnetic resonance studies of boron nitride (BN) nanotubes prepared by mechano-thermal route. The NMR lineshape obtained at 192.493 MHz (14.7 T) was fitted with two Gaussian functions, and the 11B nuclear magnetization relaxations were satisfied with the stretched–exponential function, exp[-(tlT1)(D+1)/6] (D: space dimension) at all temperatures. In addition, the temperature dependence of spin–lattice relaxation rates was well described by Ti-1 = aT (a: constant, T: temperature) and could be understood in terms of direct phonon process. All the 11BNMR results were explained by considering the inhomogeneous distribution of the paramagnetic metal catalysts, such as α-Fe, Fe–N, and Fe2 B, that were incorporated during the process of high-energy ball milling of boron powder and be synthesized during subsequent thermal annealing. X-ray powder diffraction as well as electron paramagnetic resonance (EPR) on BN nanotubes were also conducted and the results obtained supported these conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N,N,N,N-Tetramethylammonium dicyanamide (Me4NDCA) has been examined via differential scanning calorimetry (DSC), thermogravimetric analysis, conductivity, single crystal X-ray diffraction and 1H nuclear magnetic resonance (NMR) analyses, and was found to be highly conductive in the solid state (σ =10−3 S cm−2 at 420 K) and to also exhibit unusual plastic crystal behaviour. To investigate the correlation between such behaviour and the occurrence of molecular rotations in the crystal, 1H NMR second moment measurements are compared with calculated values predicted from the crystal structure. While DSC analysis indicates a number of solid–solid transitions at ambient temperatures, subsequent 1H NMR analysis of the Me4N+ cation shows that a variety of rotational motions become active at low (<240 K) temperatures, and that such transitions in rotational states occur over a range of temperatures rather than in a sharp transition. Conductivity analysis reveals that between 320 K and 420 K the conductivity increases by more than six orders of magnitude in the solid state, in line with the transition of the Me4N+ cation to a diffusive state, and that other phase transitions observed in this temperature range have no marked effect on the conductivity. Conduction in this solid state is therefore envisaged to involve a vacancy-diffusion model, involving Me4N+ cation vacancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of ion exchange and transport behavior in electrolyte materials is crucial for designing and developing novel electrolytes for electrochemical device applications such as fuel cells or batteries. In the present study, we show that, upon the addition of triflic acid (HTf) to the guanidinium triflate (GTf) solid-state matrix, several orders of magnitude enhancement in the proton conductivity can be achieved. The static 1H and 19F solid-state NMR results show that the addition of HTf has no apparent effect on local molecular mobility of the GTf matrix at room temperature. At higher temperatures, however, the HTf exhibits fast ion exchange with the GTf matrix. The exchange rate, as quantified by our continuum T2 fitting analysis, increases with increasing temperature. The activation energy for the chemical exchange process was estimated to be 58.4 kJ/mol. It is anticipated that the solid-state NMR techniques used in this study may be also applied to other organic solid-state electrolyte systems to investigate their ion-exchange processes.