4 resultados para NUCLEAR MATERIALS

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lithium fast-ion conductor, Li1+xAlxTi2−x(PO4)3 (LATP) has been modified via changes in stoichiometry during the processing steps. The resultant changes have been followed using 27Al MAS NMR, X-ray powder diffraction and impedance spectroscopy. The most important changes were those of the form Li1.3+4yAl0.3Ti1.7−y(PO4)3. It was possible to remove the AlPO4 phase (both tridymite and berlinite polymorphs), as monitored by X-ray diffractograms and 27Al NMR spectra. Consequently, these changes appear to result in increased grain boundary conductivity of the LATP material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic crystal materials have long been known but have only relatively recently become of interest as solid–state ion conductors. Their properties are often associated with dynamic orientational disorder or rotator motions in the crystalline lattice. This paper describes recent work in the field including the range of organic ionic compounds that exhibit ion conduction at room temperature. Conductivity in some cases is high enough to render the compounds of interest as electrolyte materials in all solid state electrochemical devices. Doping of the plastic crystal phase with a small ion such as Li+ in some cases produces an even higher conductivity. In this case the plastic crystal acts as a solid state “solvent” for the doped ion and supports the conductive motion of the dopant via motions of the matrix ions. These doped materials are also described in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of ion exchange and transport behavior in electrolyte materials is crucial for designing and developing novel electrolytes for electrochemical device applications such as fuel cells or batteries. In the present study, we show that, upon the addition of triflic acid (HTf) to the guanidinium triflate (GTf) solid-state matrix, several orders of magnitude enhancement in the proton conductivity can be achieved. The static 1H and 19F solid-state NMR results show that the addition of HTf has no apparent effect on local molecular mobility of the GTf matrix at room temperature. At higher temperatures, however, the HTf exhibits fast ion exchange with the GTf matrix. The exchange rate, as quantified by our continuum T2 fitting analysis, increases with increasing temperature. The activation energy for the chemical exchange process was estimated to be 58.4 kJ/mol. It is anticipated that the solid-state NMR techniques used in this study may be also applied to other organic solid-state electrolyte systems to investigate their ion-exchange processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biomedical application of graphene quantum dots (GQDs) is a new emerging area. However, their safety data are still in scarcity to date. Particularly, the effect of GQDs on the immune system remains unknown. This study aimed to elucidate the interaction of GQDs with macrophages and the underlying mechanisms. Our results showed that GQDs slightly affected the cell viability and membrane integrity of macrophages, whereas GQDs significantly increased reactive oxygen species (ROS) generation and apoptotic and autophagic cell death with an increase in the expression level of Bax, Bad, caspase 3, caspase 9, beclin 1, and LC3-I/II and a decrease in that of Bcl-2. Furthermore, low concentrations of GQDs significantly increased the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-8, whereas high concentrations of GQDs elicited opposite effects on the cytokines production. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase (MAPK), abolished the cytokine-inducing effect of GQDs in macrophages. Moreover, GQDs significantly increased the phosphorylation of p38 MAPK and p65, and promoted the nuclear translocation of nuclear factor-κB (NF-κB). Taken together, these results show that GQDs induce ROS generation, apoptosis, autophagy, and inflammatory response via p38MAPK and NF-κB mediated signaling pathways in THP-1 activated macrophages.