35 resultados para NI-CU ALLOYS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of physically-based models of microstructural evolution during thermomechanical processing of metallic materials requires knowledge of the internal state variable data, such as microstructure, texture, and dislocation substructure characteristics, over a range of processing conditions. This is a particular problem for steels, where transformation of the austenite to a variety of transformation products eradicates the hot deformed microstructure. This article reports on a model Fe-30wt% Ni-based alloy, which retains a stable austenitic structure at room temperature, and has, therefore, been used to model the development of austenite microstructure during hot deformation of conventional low carbon-manganese steels. It also provides an excellent model alloy system for microalloy additions. Evolution of the microstructure and crystallographic texture was characterized in detail using optical microscopy, X-ray diffraction (XRD), SEM, EBSD, and TEM. The dislocation substructure has been quantified as a function of crystallographic texture component for a variety of deformation conditions for the Fe-30% Ni-based alloy. An extension to this study, as the use of a microalloyed Fe-30% Ni-Nb alloy in which the strain induced precipitation mechanism was studied directly. The work has shown that precipitation can occur at a much finer scale and higher number density than hitherto considered, but that pipe diffusion leads to rapid coarsening. The implications of this for model development are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Very recently 63Cu NMR has been shown to be extremely sensitive in detecting and differentiating between the precipitate phases that form in Al-Cu alloys during heat treatment. This technique is now used to quantify the effectiveness of small additions of Sn to the alloy Al-1.7 at.% Cu in promoting the rapid nucleation and growth of the θ'-phase precipitate. Two parallel series of 63Cu NMR spectra were recorded for Al-1.7 at.% Cu and Al-1.7 at.% Cu-0.01 at.% Sn: (i) aged at 130° C to observe the comparative rate of phase evolution and (ii) aged at 200° C to observe the rate of growth of θ'-phase and to compare with the Vickers hardness of the alloys aged at 200° C for similar periods. Evidence is presented that a metastable precursor phase to θ' (labelled TPHM2757math001) is formed in Al-Cu-Sn which transforms to θ' on further aging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The collection contains EBSD maps of annealed nanocrystalline Ni and Ni-Fe alloys. The maps show the variation of crystallographic texture across mesoscale colonies within these alloys.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, a solution containing ammonium fluoride (NH4F) and nitric acid (HNO3) was used as an alternative to the conventional highly toxic pickling solution HF/HNO3 for pickling weldments of selected stainless steels including Type 316 stainless steel (UNS S31600), duplex stainless steel 2205 (UNS S32205), and super duplex stainless steel 2507 (UNS S32750). Electrochemical and surface analytical methods were used to understand the effects of pickling on the stainless steel weldments. Cyclic potentiodynamic polarization (CPP) test results indicated that the restoration of passivity of stainless steel weldments could be achieved by pickling the weldments in both HF/HNO3 solution and NH4F/HNO3 solutions. Scanning electron microscopy observation of the UNS S32750 weldment surface revealed that both the HF/HNO3 solution and the NH4F/HNO3 solution could remove the heat tint on the weldment. X-ray photoelectron spectroscopy analysis indicated that treatment in these two pickling solutions produced passive films with similar characteristics. Thus, this work suggests that the NH4F/HNO3 solution is a promising alternative to HF/HNO3 solution for the pickling of stainless steel weldments, and that the CPP test approach can be used in conjunction with surface analytical methods for further development of safer and environmentally friendly picklingsolutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two amorphous ribbons with the compositions of Al88Ni6La6 and Al86Ni6La6Cu2 were made using the meltspun method, and their thermal response and electrochemical behavior were studied comparatively. Differential scanning calorimetry (DSC) and electrochemical polarization measurements indicated that Al86Ni6La6Cu2 exhibited slightly higher crystallization temperature (Tx), lower melting point (T1) and better corrosion resistance in 0.01 mol · L−1 NaCl alkaline solution. These results demonstrated that Cu (2%) addition could slightly promote the glass forming ability, but it could greatly improve the corrosion resistance of Al88Ni6La6 alloy in 0.01 mol · L−1 NaCl alkaline solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three ferromagnetic shape-memory alloys with the chemical compositions of Ni53Mn25Ga22, Ni48Mn30Ga22, and Ni48Mn25Ga22Co5 were prepared by the induction-melting and hot-forging process. The crystal structures were investigated by the neutron powder diffraction technique, showing that Ni53Mn25Ga22 and Ni48Mn25Ga22Co5 have a tetragonal, 14/mmm martensitic structure at room temperature, while Ni48Mn30Ga22 has a cubic, L21 austenitic structure at room temperature. The development of textures in the hot-forged samples shows the in-plane plastic flow anisotropy from the measured pole figures by means of the neutron diffraction technique. Significant texture changes were observed for the Ni48Mn25Ga22Co5 alloy after room temperature deformation, which is due to the deformation-induced rearrangements of martensitic variants. An excellent shape-memory effect (SME) with a recovery ratio of 74 pct was reported in this Ni48Mn25Ga22Co5 polycrystalline alloy after annealing above the martensitic transformation temperature, and the “shape-memory” influence also occurs in the distributions of grain orientations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The martensitic transformation crystallography in two Ni 53Mn25Ga22 (at. %) ferromagnetic shape memory alloys (FSMAs) was investigated by means of misorientation calculation and pole figure analysis based on the orientation of the martensitic lamellae obtained from electron backscattered diffraction (EBSD) measurements. In the alloy that was first annealed at 1073K for 4h, and then cooled to 473K at ~4K/min and held for 30min, followed by cooling to room temperature at ~10K/min, there are only two kinds of differently orientated martensitic lamellae with a misorientation angle of ~82° distributed alternatively in each initial austenite grain. There is a compound twinning orientation relationship between the two lamellae. The prevalent orientation relationship between austenite and martensite is Kurdjumov-Sachs (K-S) relationship with (111)A//(10I)M, [1-10]a//[11-1]m. In the alloy that was annealed at 1173K for 4h followed by furnace cooling, nanoscale twins inside the martensitic lamellae were observed and the orientation relationships both between the nanotwins within one lamella and between the nanotwins in two neighboring lamellae were determined. The results presented in this paper will enrich the crystallographic data of the FSMAs and offer useful information for the development of novel FSMAs with optimal performances.