6 resultados para NB SURFACE

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current orthopaedic biomaterials research mainly focuses on designing implants that could induce controlled, guided and rapid healing. In the present study, the surface morphologies of titanium (Ti) and niobium (Nb) metals were tailored to form nanoporous, nanoplate and nanofibre-like structures through adjustment of the temperature in the alkali-heat treatment. The in vitro bioactivity of these structures was then evaluated by soaking the treated samples in simulated body fluid (SBF). It was found that the morphology of the modified surface significantly influenced the apatite-inducing ability. The Ti surface with a nanofibre-like structure showed better apatite-inducing ability than the nanoporous or nanoplate surface structures. A thick dense apatite layer formed on the Ti surface with nanofibre-like structure after 1 week of soaking in SBF. It is expected that the nanofibre-like surface could achieve good apatite formation in vivo and subsequently enhance osteoblast cell adhesion and bone formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A porous Ti–18 at.%Nb–4 at.%Sn (hereafter, Ti–18Nb–4Sn) alloy was prepared by powder metallurgy. The porous structures were examined by scanning electron microscopy and the phase constituents were analysed by X-ray diffraction. Mechanical properties of the porous alloy were investigated using a compressive test. To enhance the bioactivity of the alloy surface, alkali-heat treatment was used to modify the surface. The bioactivity of the pre-treated alloy sample was investigated using a biomimetic process by soaking the sample into simulated body fluid (SBF). Results indicate that the elastic modulus and plateau stress of the porous Ti–18Nb–4Sn alloy decrease with decreasing relative density. The mechanical properties of the porous alloy can be tailored to match those of human bone. After soaking in SBF for 7 days, a hydroxyapatite layer formed on the surface of the pre-treated porous Ti–18Nb–4Sn alloy. The pre-treated porous Ti–18Nb–4Sn alloy therefore has the potential to be a bioactive implant material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A porous Ti-16Sn-4Nb alloy with an average pore size of 300 µm and porosity of 60 % was prepared by powder metallurgy, and a bone-like apatite coating was obtained by soaking the samples in a concentrated simulated body fluid (lOx SBF). The changes of the microstructure and composition on the surface with soaking time were investigated by using X-ray diffractometry (XRD), and scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS), The bone-like apatite granules started to deposit throughout the porous Ti alloy foam aner 1 h soaking, and the number of granules increased with the increase of the soaking time. A uniform bone-like apatite layer covered the entire surface of the sample after soaking in Ihe lOx SBF for 6h. The Ti-16Sn-4Nb foam showed a good bioactivity after a thermochemical process and soaking into a 1Ox SBF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current orthopaedic biomaterials research mainly focuses on developing implants that could induce controlled, guided and rapid healing. In the present study, the surface morphologies of titanium (Ti) and niobium (Nb) metals were tailored to form nanoporous, nanoplate and nanofibrelike structures through adjustment of the temperature in the alkali treatment. The in vitro bioactivity of these structures was then evaluated by soaking in simulated body fluid (SBF). It was found that the morphology of the modified surface significantly influenced the apatite inducing ability. The Ti surface with a nanofiber-like structure showed better apatite inducing ability, than the nanoporous or nanoplate surface structures. A thick dense apatite layer formed on the Ti surface with nanofiberlike structure after 1 week soaking in SBF. It is expected that the anofibre-like surface could achieve good apatite formation in vivo and subsequently enhance osteoblast cell adhesion and bone formation in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigated the structure and properties relationship, surface modification, biocompatibility and bioactivity of a porous Ti-Nb-Zr alloy. The porous alloy exhibited inter-connected porous structure, good biocompatibility and high mechanical strength with an elastic modulus close to that of bone. Porous Ti-Nb-Zr alloys are thus promising biomaterials for hard tissue replacement.