9 resultados para N-glycosylation

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular role of creatine (Cr) and Cr phosphate (CrP) has been studied extensively in neural, cardiac and skeletal muscle. Several studies have demonstrated that alterations in the cellular total Cr (Cr + CrP) concentration in these tissues can produce marked functional and/or structural change. The primary aim of this review was to critically evaluate the literature that has examined the regulation of cellular total Cr content. In particular, the review focuses on the regulation of the activity and gene expression of the Cr transporter (CreaT), which is primarily responsible for cellular Cr uptake. Two CreaT genes (CreaT1 and CreaT2) have been identified and their chromosomal location and DNA sequencing have been completed. From these data, putative structures of the CreaT proteins have been formulated. Transcription products of the CreaT2 gene are expressed exclusively in the testes, whereas CreaT1 transcripts are found in a variety of tissues. Recent research has measured the expression of the CreaT1 protein in several tissues including neural, cardiac and skeletal muscle. There is very little information available about the factors regulating CreaT gene expression. There is some evidence that suggests the intracellular Cr concentration may be involved in the regulatory process but there is much more to learn before this process is understood. The activity of the CreaT protein is controlled by many factors. These include substrate concentration, transmembrane Na+ gradients, cellular location, and various hormones. It is also likely that transporter activity is influenced by its phosphorylation state and by its interaction with other plasma membrane proteins. The extent of CreaT protein glycosylation may vary within cells, the functional significance of which remains unclear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bovine Muc1 protein is synthesized by mammary epithelial cells and shed into milk as an integral component of the milk fat globule membrane; however, the structure and functions of this mucin, particularly in relation to lactation, are poorly defined. The objectives of this investigation were to investigate the Muc1 gene and protein structures in the context of lactation and to test the hypothesis that Muc1 has a role in innate immune defense. Polymerase chain reaction analysis of genomic DNA from 630 cattle revealed extensive polymorphism in the variable number of tandem repeats (VNTR) in the bovine Muc1 gene. Nine allelic
variants spanning 7 to 23 VNTR units, each encoding 20 AA, were identified. Three alleles, containing 11, 14, and 16 VNTR units, respectively, were predominant. In addition, a polymorphism in one of the VNTR units has the potential to introduce a unique site for N-linked glycosylation. Statistical analysis indicated weak associations between the VNTR alleles and milk protein and fat percentages in a progeny-tested population of Holstein-Friesian dairy cattle. No association with somatic cell count could be demonstrated. Bovine Muc1 was purified from milk fat globule membranes and characterized. The protein was highly glycosylated, primarily with O-linked sialylated T-antigen [Neu5Ac(α2–3)-Gal(β1–3)-GalNAcα1] and, to a lesser extent, with N-linked oligosaccharides, which together accounted for approximately 60% of the apparent mass of Muc1. Purified bovine Muc1 directly bound fluorescently labeled Escherichia coli BioParticles (Invitrogen, Mount Waverley, Australia) and inhibited their binding to bovine mammary epithelial cells grown in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In molluscs, the neurotransmitter serotonin (5-HT) has been linked to a variety of biological roles including gamete maturation and spawning. The possible involvement of 5-HT in abalone gamete release was demonstrated by a dose-dependent increase in Haliotis rubra gonad contractile bioactivity following 5-HT stimulation. Physiological functions associated with 5-HT, are mediated through binding to 5-HT receptors. A cDNA encoding a putative 5-HT receptor consisting of 359 amino acids was isolated from the tropical abalone H. asinina, termed 5-HT1 ha. The 5-HT1 ha shares G-protein-coupled receptor motifs with metazoan 5-HT receptors, including predicted transmembrane domains, active sites for protein kinase action, and N-linked glycosylation sites. However, the third intracellular loop of 5-HT1 ha is relatively short, and only six transmembrane domains are predicted, implying a truncated receptor. Phylogenetic analysis with known 5-HT receptor genes suggests that 5-HT1 ha belongs to the type 1 5-HT receptor family. Expression analysis by RT-PCR showed that 5-HT1 ha  mRNA was present in all tissues examined, including the neural ganglia and gonad tissues. Immunocytochemistry revealed the presence of 5-HT1 ha specifically within the soma of neuronal cells located in the outer cortex of both cerebral and pleuropedal ganglia. In ovarian and testicular tissues, 5-HT1 ha immunoreactivity was observed in epithelial cells of the outer capsule and connective tissue of the trabeculae to which the gamete follicles adhere. Whether this receptor transcript is translated to a functional protein needs to be verified, but if so, it could play a role in reproduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective
Glucosamine has been previously shown to suppress cartilage aggrecan catabolism in explant cultures. We determined the effect of glucosamine on ADAMTS5 (a disintegrin-like and metalloprotease domain (reprolysin type) with thrombospondin type-1 motifs 5), a major aggrecanase in osteoarthritis, and investigated a potential mechanism underlying the observed effects.

Design
HEK293F and CHO-K1 cells transiently transfected with ADAMTS5 cDNA were treated with glucosamine or the related hexosamine mannosamine. Glucosamine effects on FURIN transcription were determined by quantitative RT-PCR. Effects on furin-mediated processing of ADAMTS5 zymogen, and aggrecan processing by glucosamine-treated cells, were determined by western blotting. Post-translational modification of furin and N-glycan deficient furin mutants generated by site-directed mutagenesis was analyzed by western blotting, and the mutants were evaluated for their ADAMTS5 processing ability in furin-deficient CHO-RPE.40 cells.

Results

Ten mM glucosamine and 5–10 mM mannosamine reduced excision of the ADAMTS5 propeptide, indicating interference with the propeptide excision mechanism, although mannosamine compromised cell viability at these doses. Although glucosamine had no effect on furin mRNA levels, western blot of furin from glucosamine-treated cells suggested altered post-translational modification. Glucosamine treatment led to decreased glycosylation of cellular furin, with reduced furin autoactivation as the consequence. Recombinant furin treated with peptide N-glycanase F had reduced activity against a synthetic peptide substrate. Indeed, site-directed mutagenesis of two furin N-glycosylation sites, Asn387 and Asn440, abrogated furin activation and this mutant was unable to rescue ADAMTS5 processing in furin-deficient cells.

Conclusions
Ten mM glucosamine reduces excision of the ADAMTS5 propeptide via interference with post-translational modification of furin and leads to reduced aggrecanase activity of ADAMTS5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EGF domains are extracellular protein modules cross-linked by three intradomain disulfides. Past studies suggest the existence of two types of EGF domain with three-disulfides, human EGF-like (hEGF) domains and complement C1r-like (cEGF) domains, but to date no functional information has been related to the two different types, and they are not differentiated in sequence or structure databases. We have developed new sequence patterns based on the different C-termini to search specifically for the two types of EGF domains in sequence databases. The exhibited sensitivity and specificity of the new pattern-based method represents a significant advancement over the currently available sequence detection techniques. We re-annotated EGF sequences in the latest release of Swiss-Prot looking for functional relationships that might correlate with EGF type. We show that important post-translational modifications of three-disulfide EGFs, including unusual forms of glycosylation and post-translational proteolytic processing, are dependent on EGF subtype. For example, EGF domains that are shed from the cell surface and mediate intercellular signaling are all hEGFs, as are all human EGF receptor family ligands. Additional experimental data suggest that functional specialization has accompanied subtype divergence. Based on our structural analysis of EGF domains with three-disulfide bonds and comparison to laminin and integrin-like EGF domains with an additional interdomain disulfide, we propose that these hEGF and cEGF domains may have arisen from a four-disulfide ancestor by selective loss of different cysteine residues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis We determined whether high-glucose-induced beta cell dysfunction is associated with oxidative stress in the DBA/2 mouse, a mouse strain susceptible to islet failure.

Materials and methods Glucose- and non-glucose-mediated insulin secretion from the islets of DBA/2 and control C57BL/6 mice was determined following a 48-h exposure to high glucose. Flux via the hexosamine biosynthesis pathway was assessed by determining O-glycosylated protein levels. Oxidative stress was determined by measuring hydrogen peroxide levels and the expression of anti-oxidant enzymes.

Results Exposure to high glucose levels impaired glucose-stimulated insulin secretion in DBA/2 islets but not C57BL/6 islets, and this was associated with reduced islet insulin content and lower ATP levels than in C57BL/6 islets. Exposure of islets to glucosamine for 48 h mimicked the effects of high glucose on insulin secretion in the DBA/2 islets. High glucose exposure elevated O-glycosylated proteins; however, this occurred in islets from both strains, excluding a role for O-glycosylation in the impairment of DBA/2 insulin secretion. Additionally, both glucosamine and high glucose caused an increase in hydrogen peroxide in DBA/2 islets but not in C57BL/6 islets, an effect prevented by the antioxidant N-acetyl-l-cysteine. Interestingly, while glutathione peroxidase and catalase expression was comparable between the two strains, the antioxidant enzyme manganese superoxide dismutase, which converts superoxide to hydrogen peroxide, was increased in DBA/2 islets, possibly explaining the increase in hydrogen peroxide levels.

Conclusions/interpretation Chronic high glucose culture caused an impairment in glucose-stimulated insulin secretion in DBA/2 islets, which have a genetic predisposition to failure, and this may be the result of oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O-acetylation is one of the major modifications of sialic acids that significantly alters biological properties of the parent molecule. These O-acetylated forms are components of the cellular membrane and can affect physiological and pathological responses. Understanding the role of N-glycans in physiology is of increasing relevance to cellular biologists in various disciplines who study glycoproteomics yet lack information regarding the function of the attached glycans. It is well known that stress may decrease immune function in fish; however, there are only few suitable biomarkers available to monitor the physiological responses under the stress conditions. This study is the first report on the effect of stress on the profile of O-acetylation of sialic acids in fish serum. In order to preserve the relevant structural characteristics as much as possible, native N-glycans were directly analyzed using CE-MS. We have characterized the N-glycans in serum of salmon (Salmo salar) exposed to long-term handling stress (15 s out of the water, daily for 4 wk) and compared with the results obtained from sera of control fish. The results indicated that major N-glycans in salmon serum contained mono-acetylated sialic acids (83%), and that the O-acetylation pattern of sialic acids could be altered by long-term stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HIV-1 gp120-gp41 complex, which mediates viral fusion and cellular entry, undergoes rapid evolution within its external glycan shield to enable escape from neutralizing antibody (NAb). Understanding how conserved protein determinants retain functionality in the context of such evolution is important for their evaluation and exploitation as potential drug and/ or vaccine targets. In this study, we examined how the conserved gp120-gp41 association site, formed by the N- and Cterminal segments of gp120 and the disulfide-bonded region (DSR) of gp41, adapts to glycan changes that are linked to neutralization sensitivity. To this end, a DSR mutant virus (K601D) with defective gp120-association was sequentially passaged in peripheral blood mononuclear cells to select suppressor mutations. We reasoned that the locations of suppressors point to structural elements that are functionally linked to the gp120-gp41 association site. In culture 1, gp120 association and viral replication was restored by loss of the conserved glycan at Asn136 in V1 (T138N mutation) in
conjunction with the L494I substitution in C5 within the association site. In culture 2, replication was restored with deletion of the N139INN sequence, which ablates the overlapping Asn141-Asn142-Ser-Ser potential N-linked glycosylation sequons in
V1, in conjunction with D601N in the DSR. The 136 and 142 glycan mutations appeared to exert their suppressive effects by altering the dependence of gp120-gp41 interactions on the DSR residues, Leu593, Trp596 and Lys601. The 136 and/or 142
glycan mutations increased the sensitivity of HIV-1 pseudovirions to the glycan-dependent NAbs 2G12 and PG16, and also pooled IgG obtained from HIV-1-infected individuals. Thus adjacent V1 glycans allosterically modulate the distal gp120-
gp41 association site. We propose that this represents a mechanism for functional adaptation of the gp120-gp41 association site to an evolving glycan shield in a setting of NAb selection.