4 resultados para Myrmecophaga tridactyla

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time budgets of free-living chicks of Arctic Terns Sterna paradisaea and Common Terns S. hirundo throughout development are presented with special reference to changes in time allocation when growth rate varies. Chicks of both species were inactive most of the time observed (87%). Time allocated to the different behaviours changed during development and was generally better correlated with body mass than age. Slower growing nestlings were brooded more and allocated more time to quiescence and less time to locomotion, preening, begging and attacking (the latter two significant only for the Arctic Tern). The energetic implications of variation in time budgets with age and growth rate were considered. Parental brooding resulted in an average energy saving of nearly 40% of an individual nestling's thermoregulatory costs. Whereas thermoregulatory costs remained nearly unchanged in Arctic Tern chicks, these were negatively correlated with growth rate in Common Terns. Tentatively, we estimated a 30% reduction in a nestling's total energy requirement for a 50% reduction in average growth rate for both species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As apex predators in marine ecosystems, seabirds may primarily experience climate change impacts indirectly, via changes to their food webs. Observed seabird population declines have been linked to climate-driven oceanographic and food web changes. However, relationships have often been derived from relatively few colonies and consider only sea surface temperature (SST), so important drivers, and spatial variation in drivers, could remain undetected. Further, ex - plicit climate change projections have rarely been made, so longer-term risks remain unclear. Here, we use tracking data to estimate foraging areas for 11 black-legged kittiwake Rissa tridac - ty la colonies in the UK and Ireland, thus reducing reliance on single colonies and allowing calculation of colony-specific oceanographic conditions. We use mixed models to consider how SST, the potential energy anomaly (indicating density stratification strength) and the timing of seasonal stratification influence kittiwake productivity. Across all colonies, higher breeding success was associated with weaker stratification before breeding and lower SSTs during the breeding season. Eight colonies with sufficient data were modelled individually: higher productivity was associated with later stratification at 3 colonies, weaker stratification at 2, and lower SSTs at one, whilst 2 colonies showed no significant relationships. Hence, key drivers of productivity varied among colonies. Climate change projections, made using fitted models, indicated that breeding success could decline by 21 to 43% between 1961-90 and 2070-99. Climate change therefore poses a longer-term threat to kittiwakes, but as this will be mediated via availability of key prey species, other marine apex predators could also face similar threats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How animals allocate their time to different behaviours has important consequences for their overall energy budget and reflects how they function in their environment. This potentially affects their ability to successfully reproduce, thereby impacting their fitness. We used accelerometers to record time-activity budgets of 21 incubating and chick-rearing kittiwakes (Rissa tridactyla) on Puffin Island, UK. These budgets were examined on a per day and per foraging trip basis. We applied activity-specific estimates of energy expenditure to the kittiwakes' time-activity budgets in order to identify the costs of variation in their allocation of time to different behaviours. Estimates of daily energy expenditure for incubating kittiwakes averaged 494 ± 20 kJ d-1 while chick-rearing birds averaged 559 ± 11 kJ d-1. Time-activity budgets highlighted that kittiwakes did not spend a large proportion of their time flying during longer foraging trips, or during any given 24-h period. With time spent flying highlighted as the driving factor behind elevated energy budgets, this suggests behavioural compensation resulting in a possible energetic ceiling to their activities. We also identified that kittiwakes were highly variable in the proportion of time they spent either flying or on the water during foraging trips. Such variation meant that using forage trip duration alone to predict energy expenditure gave a mean error of 19% when compared to estimates incorporating the proportion of a foraging trip spent flying. We have therefore highlighted that trip duration alone is not an accurate indicator of energy expenditure.