9 resultados para Musculoskeletal System

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Community locomotion is threatened when older individuals are required to negotiate obstacles, which place considerable stress on the musculoskeletal system. The vulnerability of older adults during challenging locomotor tasks is further compromised by age-related strength decline and muscle atrophy. The first study in this investigation determined the relationship between the major muscle groups of the lower body and challenging locomotor tasks commonly found in the community environment of older adults. Twenty-nine females and sixteen males aged between 62 and 88 years old (68.2 ±6.5) were tested for the maximal voluntary contraction (MVC) strength of the knee extensors and 1-RM for the hip extensors, flexors, adductors, abductors, knee extensors and flexors and ankle plantar flexors. Temporal measurements of an obstacle course comprising four gait tasks set at three challenging levels were taken. The relationship between strength and the obstacle course dependent measures was explored using linear regression models. Significant associations (p≤0.05) between all the strength measures and the gait performances were found. The correlation values between strength and obstructed gait (r = 0.356-0.554) and the percentage of the variance explained by strength (R2 = 13%-31%), increased as a function of the challenging levels, especially for the stepping over and on and off conditions. While the difficulty of community older adults to negotiate obstacles cannot be attributed to a single causal pathway, the findings of the first study showed that strength is a critical requirement. That the magnitude of the association increased as a function of the challenging levels, suggests that interventions aimed at improving strength would potentially be effective in helping community older adults to negotiate environmental gait challenges. In view of the findings of the first study, a second investigation determined the effectiveness of a progressive resistance-training program on obstructed gait tasks measured under specific laboratory conditions and on an obstacle course mimicking a number of environmental challenges. The time courses of strength gains and neuromuscular mechanisms underpinning the exercise-induced strength improvements in community-dwelling older adults were also investigated. The obstructed gait conditions included stepping over an obstacle, on and off a raised surface, across an obstacle and foot targeting. Forty-three community-living adults with a mean age of 68 years (control =14 and experimental=29) completed a 24-week progressive resistance training program designed to improve strength and induce hypertrophy in the major muscles of the lower body. Specific laboratory gait kinetics and kinematics and temporal measures taken on the obstacle course were measured. Lean tissue mass and muscle activation of the lower body muscle groups were assessed. The MVC strength of the knee extensors and 1-RM of the hip extension, hip flexion, knee extension, knee flexion and ankle plantar flexion were measured. A 25% increase on the MVC of the knee extensors (p≤0.05) was reported in the training group. Gains ranging between 197% and 285% were recorded for the 1-RM exercises in the trained subjects with significant improvements found throughout the study (p≤0.05). The exercise-induced strength gains were mediated by hypertrophic and neural factors as shown by 8.7% and 27.7% increases (p≤0.05) in lean tissue mass and integrated electromyographic activity, respectively. Strength gains were accompanied by increases in crossing velocity, stride length and reductions in stride duration, stance and swing time for all gait tasks except for the foot targeting condition. Specific kinematic variables associated with safe obstacle traverse such as vertical obstacle heel clearance, limb flexion, horizontal foot placements prior to and at post obstacle crossing and landing velocities resulted in an improved crossing strategy in the experimental subjects. Significant increases in the vertical and anterior-posterior ground reaction forces accompanied the changes in the gait variables. While further long-term prospective studies of falls rates would be needed to confirm the benefits of lower limb enhanced strength, the findings of the present study provide conclusive evidence of significant improvements to gait efficiency associated with a systematic resistance-training program. It appears, however, that enhanced lower body strength has limited effects on gait tasks involving a dynamic balance component. In addition, due to the larger strength-induced increases in voluntary activation of the leg muscle compared to relatively smaller gains in lean tissue mass, neural adaptations appear to play a greater contributing role in explaining strength gains during the current resistance training protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ý-lactoglobulin enriched whey protein isolate, but not carbohydrate, increased growth signalling in human skeletal muscle when consumed in conjunction with resistance exercise. Ageing did not impair the anabolic signalling response; however this response was attenuated after training. These findings help identify strategies to prevent, or delay the onset of sarcopenia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand whether prolonged confinement results in reductions in physical activity and adaptation in the musculoskeletal system, six subjects were measured during 520 d isolation in the Mars500 study. We tested the hypothesis that physical activity reduces in prolonged confinement and that this would be associated with decrements of neuromuscular performance. Physical activity, as measured by average acceleration of the body's center of mass ("activity temperature") using the actibelt® device, decreased progressively over the course of isolation (p<0.00001). Concurrently, countermovement jump power and single-leg hop force decreased during isolation (p<0.001) whilst grip force did not change (p≥0.14). Similar to other models of inactivity, greater decrements of neuromuscular performance occurred in the lower-limb than in the upper-limb. Subject motivational state increased non-significantly (p = 0.20) during isolation, suggesting reductions in lower-limb neuromuscular performance were unrelated to motivation. Overall, we conclude that prolonged confinement is a form of physical inactivity and is associated with adaptation in the neuromuscular system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To use a population-level, public-hospital approach to compare the prevalence and cost of musculoskeletal diseases (MSD) with other clinical specialties.

Methods: A healthcare utilization survey of 4 million individual records over 4 years, from all major public hospitals in the state of Victoria (estimated population 4.8 million residents in 2000/01) from 1997/98 to 2000/01. Main outcome measures were inpatient episodes of care, bed-days, and outpatient clinic encounters. MSD was defined as the combination of orthopedics and rheumatology.

Results: After obstetrics, MSD was the most frequent outpatient service, with orthopedics accounting for 9.9% of all visits in 2000/01. The proportion of MSD outpatient encounters (on average 11.6% of the total) was constant over the study period. Among 26 medical specialties, MSD had the sixth highest number of inpatient episodes (6.2% in 2000/01), following renal dialysis (14.6%), general surgery (8.2%), obstetrics (7.6%), gastroenterology (7.1%), and general medicine (6.7%). MSD was the fifth highest consumer of bed-days, occupying on average 7.7% of all beds per annum in the period 1997/98 to 2000/01, behind psychiatry (10.1%), respiratory medicine (8.5%), rehabilitation (8.3%), and general medicine (7.8%). MSD was the third most-costly discipline in 2000/01, with total costs of over A dollars 169 million (9.7% of total inpatient costs that year), behind respiratory medicine (11.6%) and general surgery (11.5%).

Conclusion:
Compared to other diseases, MSD consumes a substantial proportion of healthcare resources in Victorian public hospitals. These data have important implications for allocation of healthcare resources, clinical care pathways, and prevention strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background
use of virtual reality and commercial gaming systems (VR/gaming) at home by older adults is receiving attention as a means of enabling physical activity.

Objective
to summarise evidence for the effectiveness and feasibility of VR/gaming system utilisation by older adults at home for enabling physical activity to improve impairments, activity limitations or participation.

Methods
a systematic review searching 12 electronic databases from 1 January 2000–10 July 2012 using key search terms. Two independent reviewers screened yield articles using pre-determined selection criteria, extracted data using customised forms and applied the Cochrane Collaboration Risk of Bias Tool and the Downs and Black Checklist to rate study quality.

Results
fourteen studies investigating the effects of VR/gaming system use by healthy older adults and people with neurological conditions on activity limitations, body functions and physical impairments and cognitive and emotional well-being met the selection criteria. Study quality ratings were low and, therefore, evidence was not strong enough to conclude that interventions were effective. Feasibility was inconsistently reported in studies. Where feasibility was discussed, strong retention (≥70%) and adherence (≥64%) was reported. Initial assistance to use the technologies, and the need for monitoring exertion, aggravation of musculoskeletal symptoms and falls risk were reported.

Conclusions

existing evidence to support the feasibility and effectiveness VR/gaming systems use by older adults at home to enable physical activity to address impairments, activity limitations and participation is weak with a high risk of bias. The findings of this review may inform future, more rigorous research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joint and muscular loads are the major internal loads in the human body. Knowing or being able to estimate those loads is of importance in multiple instances, such as in designing implants, predicting surgical outcomes, in estimating occupational loading, and in designing interventions. Unfortunately, the direct measurement of the body's internal forces is difficult, rather invasive, and requires surgical operations. Therefore, the need is growing for computational tools for muscular, bone and joint loading estimation. This article will present a review of the computational methods that can be utilized for musculoskeletal and joint system loading estimation. © 2014 CIMNE, Barcelona, Spain.