91 resultados para Muscles - Physiology

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the influence of muscle glycogen concentration on whole body insulin stimulated glucose uptake in humans and to examine the potential signalling mechanisms responsible for enhanced insulin action in the post exercise period. Untrained male subjects were conditioned to achieve a range of muscle glycogen concentrations via acute exercise or a combination of exercise and diet. The influence of muscle glycogen content on whole body insulin stimulated glucose uptake was determined via hyperinsulinaemic / euglycaemic clamps conducted at rest, 30 min after exercise or 24 hours after exercise. Muscle glycogen content did not influence insulin mediated glucose disposal either 30 min or 24 hrs after exercise when compared with basal. Conventional insulin signalling to muscle glucose uptake and signalling through the p38 MAPK cascade was also largely unaltered by glycogen concentration. Muscle glycogen synthesis was significantly increased in heavily but not moderately glycogen depleted muscle 30 min after exercise. Enhanced muscle glycogen synthesis occurred in line with a significant increase in insulin stimulated GSK-3 serine phosphorylation. This finding suggests that enhanced insulin sensitivity of muscle glycogen synthesis following glycogen depleting exercise may be mediated via a pathway involving alterations in insulin stimulated GSK-3 phosphorylation. In summary, whilst glycogen influences insulin mediated GSK-3 phosphorylation and glycogen synthesis, the findings of the present series of investigations suggest that the role of muscle glycogen in the process of insulin stimulated glucose uptake may not be as important as previously theorised.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Twenty two, young, healthy individuals participated in three studies aiming to assess the effect of various types of physical activity - acute exercise of moderate intensity and duration, varying intensity, short-term training - on skeletal muscle GLUT-4 gene and protein expression as well as on a range of genes encoding the proteins involved in carbohydrate metabolism in skeletal muscle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis found that light exercise between repeated sprints improved performance in a subsequent bout. This was attributed to a reduction in potentially fatiguing by-products within the muscle and an increased aerobic metabolism in the second sprint.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of exercise on novel signalling enzymes in skeletal muscle of humans was investigated. It was shown that exercise increased the activity of a calcium and calmodulin activated kinase. High-intensity, but submaximal, exercise increased the activity of some but not all isoforms of protein kinase C, a lipid-activated kinase family. These findings suggest that these enzymes may be part of the signalling process leading to beneficial adaptation to repeated exercise as well as the control of function within skeletal muscle during exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fifteen trained male cyclists had muscle biopsies and performed cycling tests to determine if relationships exist between the oxygen uptake response and various intramuscular variables. It was found that muscle oxidative capacity is better able to explain the oxygen uptake response during high intensity cycling than muscle fiber distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New Findings What is the central question of this study? The Notch signalling pathway plays an important role in muscle regeneration, and activation of the pathway has been shown to enhance muscle regeneration in aged mice. It is unknown whether Notch activation will have a similarly beneficial effect on muscle regeneration in the context of Duchenne muscular dystrophy (DMD). What is the main finding and its importance? Although expression of Notch signalling components is altered in both mouse models of DMD and in human DMD patients, activation of the Notch signalling pathway does not confer any functional benefit on muscles from dystrophic mice, suggesting that other signalling pathways may be more fruitful targets for manipulation in treating DMD. Abstract In Duchenne muscular dystrophy (DMD), muscle damage and impaired regeneration lead to progressive muscle wasting, weakness and premature death. The Notch signalling pathway represents a central regulator of gene expression and is critical for cellular proliferation, differentiation and apoptotic signalling during all stages of embryonic muscle development. Notch activation improves muscle regeneration in aged mice, but its potential to restore regeneration and function in muscular dystrophy is unknown. We performed a comprehensive examination of several genes involved in Notch signalling in muscles from dystrophin-deficient mdx and dko (utrophin- and dystrophin-null) mice and DMD patients. A reduction of Notch1 and Hes1 mRNA in tibialis anterior muscles of dko mice and quadriceps muscles of DMD patients and a reduction of Hes1 mRNA in the diaphragm of the mdx mice were observed, with other targets being inconsistent across species. Activation and inhibition of Notch signalling, followed by measures of muscle regeneration and function, were performed in the mouse models of DMD. Notch activation had no effect on functional regeneration in C57BL/10, mdx or dko mice. Notch inhibition significantly depressed the frequency-force relationship in regenerating muscles of C57BL/10 and mdx mice after injury, indicating reduced force at each stimulation frequency, but enhanced the frequency-force relationship in muscles from dko mice. We conclude that while Notch inhibition produces slight functional defects in dystrophic muscle, Notch activation does not significantly improve muscle regeneration in murine models of muscular dystrophy. Furthermore, the inconsistent expression of Notch targets between murine models and DMD patients suggests caution when making interspecies comparisons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle size in the lower limb is commonly assessed in neuromuscular research as it correlates with muscle function and some approaches have been assessed for their ability to provide valid estimates of muscle volume. Work to date has not examined the ability of different measurement approaches (such as cross-sectional area (CSA) measures on magnetic resonance (MR) imaging) to accurately track changes in muscle volume as a result of an intervention, such as exercise, injury or disuse. Here we assess whether (a) the percentage change in muscle CSA in 17 lower-limb muscles during 56 days bed-rest, as assessed by five different algorithms, lies within 0.5% of the muscle volume change and (b) the variability of the outcome measure is comparable to that of muscle volume. We find that an approach selecting the MR image with the highest muscle CSA and then a series of CSA measures, the number of which depended upon the muscle considered, immediately distal and proximal, provided an acceptable estimate of the muscle volume change. In the vastii, peroneal, sartorius and anterior tibial muscle groups, accurate results can be attained by increasing the spacing between CSA measures, thus reducing the total number of MR images and hence the measurement time. In the two heads of biceps femoris, semimembranosus and gracilis, it is not possible to reduce the number of CSA measures and the entire muscle volume must be evaluated. Using these approaches one can reduce the number of CSA measures required to estimate changes in muscle volume by ~60%. These findings help to attain more efficient means to track muscle volume changes in interventional studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To better understand disuse muscle atrophy, via magnetic resonance imaging, we sequentially measured muscle cross-sectional area along the entire length of all individual muscles from the hip to ankle in nine male subjects participating in 60-day head-down tilt bed rest (2nd Berlin BedRest Study; BBR2-2). We hypothesized that individual muscles would not atrophy uniformly along their length such that different regions of an individual muscle would atrophy to different extents. This hypothesis was confirmed for the adductor magnus, vasti, lateral hamstrings, medial hamstrings, rectus femoris, medial gastrocnemius, lateral gastrocnemius, tibialis posterior, flexor hallucis longus, flexor digitorum longus, peroneals, and tibialis anterior muscles (P ≤ 0.004). In contrast, the hypothesis was not confirmed in the soleus, adductor brevis, gracilis, pectineus, and extensor digitorum longus muscles (P ≥ 0.20). The extent of atrophy only weakly correlated (r = -0.30, P < 0.001) with the location of greatest cross-sectional area. The rate of atrophy during bed rest also differed between muscles (P < 0.0001) and between some synergists. Most muscles recovered to their baseline size between 14 and 90 days after bed rest, but flexor hallucis longus, flexor digitorum longus, and lateral gastrocnemius required longer than 90 days before recovery occurred. On the basis of findings of differential atrophy between muscles and evidence in the literature, we interpret our findings of intramuscular atrophy to reflect differential disuse of functionally different muscle regions. The current work represents the first lower-limb wide survey of intramuscular differences in disuse atrophy. We conclude that intramuscular differential atrophy occurs in most, but not all, of the muscles of the lower limb during prolonged bed rest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of prolonged bed rest on the cervical and upper thoracic spine is unknown. In the 2nd Berlin BedRest Study (BBR2-2), 24 male subjects underwent 60-day bed rest and performed either no exercise, resistive exercise, or resistive exercise with whole body vibration. Subjects were followed for 2 yr after bed rest. On axial cervical magnetic resonance images from the skull to T3, the volumes of the semispinalis capitis, splenius capitis, spinalis cervicis, longus capitis, longus colli, levator scapulae, sternocleidomastoid, middle and posterior scalenes, and anterior scalenes were measured. Disc height, anteroposterior width, and volume were measured from C2/3 to T6/7 on sagittal images. The volume of all muscles, with the exception of semispinalis capitis, increased during bed rest (P < 0.025). There were no significant differences between the groups for changes in the muscles. Increased upper and midthoracic spine disc height and volume (P < 0.001) was seen during bed rest, and disc height increases persisted at least 6 mo after bed rest. Increases in thoracic disc height were greater (P = 0.003) in the resistive vibration exercise group than in control. On radiological review, two subjects showed new injuries to the mid-lower thoracic spine. One of these subjects reported a midthoracic pain incident during maximal strength testing before bed rest and the other after countermeasure exercise on day 3 of bed rest. We conclude that bed rest is associated with increased disc size in the thoracic region and increases in muscle volume at the neck. The exercise device needs to be modified to ensure that load is distributed in a more physiological fashion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of instability devices and exercises to train the core musculature is an essential feature of many training centres and programs. It was the intent of this position stand to provide recommendations regarding the role of instability in resistance training programs designed to train the core musculature. The core is defined as the axial skeleton and all soft tissues with a proximal attachment originating on the axial skeleton, regardless of whether the soft tissue terminates on the axial or appendicular skeleton. Core stability can be achieved with a combination of muscle activation and intra-abdominal pressure. Abdominal bracing has been shown to be more effective than abdominal hollowing in optimizing spinal stability. When similar exercises are performed, core and limb muscle activation are reported to be higher under unstable conditions than under stable conditions. However, core muscle activation that is similar to or higher than that achieved in unstable conditions can also be achieved with ground-based free-weight exercises, such as Olympic lifts, squats, and dead lifts. Since the addition of unstable bases to resistance exercises can decrease force, power, velocity, and range of motion, they are not recommended as the primary training mode for athletic conditioning. However, the high muscle activation with the use of lower loads associated with instability resistance training suggests they can play an important role within a periodized training schedule, in rehabilitation programs, and for nonathletic individuals who prefer not to use ground-based free weights to achieve musculoskeletal health benefits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examined the gene expression and cellular localization of the creatine transporter (CreaT) protein in rat skeletal muscle. Soleus (SOL) and red (RG) and white gastrocnemius (WG) muscles were analyzed for CreaT mRNA, CreaT protein, and total creatine (TCr) content. Cellular location of the CreaT protein was visualized with immunohistochemical analysis of muscle cross sections. TCr was higher (P <= 0.05) in WG than in both RG and SOL, and was higher in RG than in SOL. Total CreaT protein content was greater (P <= 0.05) in SOL and RG than in WG. Two bands (55 and 70 kDa) of the CreaT protein were found in all muscle types. Both the 55-kDa (CreaT-55) and the 70-kDa (CreaT-70) bands were present in greater (P <= 0.05) amounts in SOL and RG than in WG. SOL and RG had a greater amount (P <= 0.05) of CreaT-55 than CreaT-70. Immunohistochemical analysis revealed that the CreaT was mainly associated with the sarcolemmal membrane in all muscle types. CreaT mRNA expression per microgram of total RNA was similar across the three muscle types. These data indicate that rat SOL and RG have an enhanced potential to transport Cr compared with WG, despite a higher TCr in the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was conducted to examine the impact of sociocultural influences and the moderating role of self-esteem and negative affect on body dissatisfaction and body change strategies for both adolescent boys and girls. Surveys designed to assess body dissatisfaction, body change strategies to decrease weight and increase muscles, perceived sociocultural pressures to lose weight and increase muscles, self-esteem and negative affect were administered to 587 boys and 598 girls aged between 11 and 15 years. The majority of respondents were from Anglo-Australian backgrounds (83%) with the remainder being from Asian and European non-English-speaking backgrounds. The sociocultural influences were found to significantly predict body dissatisfaction and body change strategies for both boys and girls. However, in the case of boys, self-esteem was found to moderate the impact of the sociocultural influences in predicting body change strategies. It was primarily the boys with low self-esteem who were more affected by the sociocultural pressures whereas the girls were affected independently of their self-esteem. Negative affect was also found to play a moderating role on some of the sociocultural influences in predicting strategies to increase muscles. Both boys and girls with higher levels of negative affect were more likely to be affected by sociocultural messages directed at increasing muscles. The results from the present study demonstrate that as well as examining the direct influence of sociocultural pressures, it is also important to examine how these may be moderated by self-esteem and negative affect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to examine the impact of strategies to both decrease weight and increase muscle tone on negative (depression, anxiety) and positive affect among adolescent males and females. The respondents were 1185 adolescents (587 males, 598 females) who were enrolled in grades 7 and 9 (mean age for MALES=13.22 years; mean age for FEMALES=13.21 years). Respondents completed the Body Image and Body Change Inventory that assessed body image satisfaction, body image importance, body change strategies to decrease weight, body change strategies to increase muscle tone, and food supplements. Respondents also completed the Pubertal Development Scale, the depression and anxiety scales of the Depression Anxiety and Stress Scale, and the positive affect items from the Positive and Negative Affect Scale. Structural equation modelling was used to determine how body satisfaction and importance, body change strategies, and puberty impacted on depression, anxiety, and positive affect. The results demonstrated that for both boys and girls, there was a strong association between body change strategies and negative affect. For boys, body dissatisfaction did not predict negative affect, although this was a strong predictor for girls. Body change strategies did not strongly predict positive affect for either boys or girls, although body image satisfaction was a strong predictor for both genders. The implications of these findings for obtaining a better understanding of the role of pubertal development, body image, and body change strategies in predicting positive and negative affect among adolescent males and females are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natriuretic peptide system is a complex family of peptides and receptors that is primarily linked to the maintenance of osmotic and cardiovascular homeostasis. A natriuretic peptide system is present in each vertebrate class but there are varying degrees of complexity in the system. In agnathans and chondrichthyians, only one natriuretic peptide has been identified, while new data has revealed that multiple types of natriuretic peptides are present in bony fish. However, it seems in tetrapods that there has been a reduction in the number of natriuretic peptide genes, such that only three natriuretic peptides are present in mammals. The peptides act via a family of guanylyl cyclase receptors to generate the second messenger cGMP, which  mediates a range of physiological effects at key targets such as the gills, kidney and the cardiovascular system. This review summarises the current knowledge of the natriuretic peptide system in non-mammalian vertebrates and discusses the physiological actions of the peptides.