26 resultados para Muscle fiber

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncoupling protein 3 (UCP3) is a muscle mitochondrial protein believed to uncouple the respiratory chain, producing heat and reducing aerobic ATP production. Our aim was to quantify and compare the UCP3 protein levels in type I, IIa and IIx skeletal muscle fibers of endurance-trained (Tr) and healthy untrained (UTr) individuals. UCP3 protein content was quantified using Western blot and immunofluorescence. Skeletal muscle fiber type was determined by both an enzymatic ATPase stain and immunofluorescence. UCP3 protein expression measured in skeletal muscle biopsies was 46% lower ( P=0.01) in the Tr compared to the UTr group. UCP3 protein expression in the different muscle fibers was expressed as follows; IIx>IIa>I in the fibers for both groups ( P<0.0167) but was lower in all fiber types of the Tr when compared to the UTr subjects ( P<0.001). Our results show that training status did not change the skeletal muscle fiber hierarchical UCP3 protein expression in the different fiber types. However, it affected UCP3 content more in type I and type IIa than in the type IIx muscle fibers. We suggest that this decrease may be in relation to the relative improvement in the antioxidant defense systems of the skeletal muscle fibers and that it might, as a consequence, participate in the training induced improvement in mechanical efficiency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To determine the effect of a high-fat diet on the expression of genes important for fat oxidation, the protein abundance of the transcription factors peroxisome proliferator-activated receptor (PPAR) isoforms α and γ, and selected enzyme activities in type I and II skeletal muscle. Research Methods and Procedures: Sprague-Dawley rats consumed either a high-fat (HF: 78% energy, n = 8) or high-carbohydrate (64% energy, n = 8) diet for 8 weeks while remaining sedentary. Results: The expression of genes important for fat oxidation tended to increase in both type I (soleus) and type II (extensor digitorum longus) fiber types after an HF dietary intervention. However, the expression of muscle type carnitine palmitoyltransferase I was not increased in extensor digitorum longus. Analysis of the gene expression of both peroxisome proliferator-activated receptor-γ coactivator and forkhead transcription factor O1 demonstrated no alteration in response to the HF diet. Similarly, PPARα and PPARγ protein levels were also not altered by the HF diet. Discussion: An HF diet increased the expression of an array of genes involved in lipid metabolism, with only subtle differences evident in the response within differing skeletal muscle fiber types. Despite changes in gene expression, there were no effects of diet on peroxisome proliferator-activated receptor-gamma coactivator and forkhead transcription factor O1 mRNA and the protein abundance of PPARα and PPARγ.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate the in vivo effects of resistance exercise on translational control in human skeletal muscle, we determined the phosphorylation of AMP-activated kinase (AMPK), eukaryotic initiation factor 4E-binding protein (4E-BP1), p70/p85-S6 protein kinase (S6K1), and ribosomal S6 protein (S6). Furthermore, we investigated whether changes in the phosphorylation of S6K1 are muscle fiber type specific. Eight male subjects performed a single high-intensity resistance exercise session. Muscle biopsies were collected before and immediately after exercise and after 30 and 120 min of postexercise recovery. The phosphorylation statuses of AMPK, 4E-BP1, S6K1, and S6 were determined by Western blotting with phospho-specific and pan antibodies. To determine fiber type-specific changes in the phosphorylation status of S6K1, immunofluorescence microscopy was applied. AMPK phosphorylation was increased approximately threefold immediately after resistance exercise, whereas 4E-BP1 phosphorylation was reduced to 27 ± 6% of preexercise values. Phosphorylation of S6K1 at Thr421/Ser424 was increased 2- to 2.5-fold during recovery but did not induce a significant change in S6 phosphorylation. Phosphorylation of S6K1 was more pronounced in the type II vs. type I muscle fibers. Before exercise, phosphorylated S6K1 was predominantly located in the nuclei. After 2 h of postexercise recovery, phospho-S6K1 was primarily located in the cytosol of type II muscle fibers. We conclude that resistance exercise effectively increases the phosphorylation of S6K1 on Thr421/Ser424, which is not associated with a substantial increase in S6 phosphorylation in a fasted state.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: We have previously shown in humans that local infusion of a nitric oxide synthase (NOS) inhibitor into the femoral artery attenuates the increase in leg glucose uptake during exercise without influencing total leg blood flow. However, rodent studies examining the effect of NOS inhibition on contraction-stimulated skeletal muscle glucose uptake have yielded contradictory results. This study examined the effect of local infusion of an NOS inhibitor on skeletal muscle glucose uptake (2-deoxyglucose) and capillary blood flow (contrast-enhanced ultrasound) during in situ contractions in rats.

RESEARCH DESIGN AND METHODS: Male hooded Wistar rats were anesthetized and one hindleg electrically stimulated to contract (2 Hz, 0.1 ms) for 30 min while the other leg rested. After 10 min, the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) (arterial concentration of 5 µmol/l) or saline was infused into the epigastric artery of the contracting leg.

RESULTS: Local NOS inhibition had no effect on blood pressure, heart rate, or muscle contraction force. Contractions increased (P < 0.05) skeletal muscle NOS activity, and this was prevented by L-NAME infusion. NOS inhibition caused a modest significant (P < 0.05) attenuation of the increase in femoral blood flow during contractions, but importantly there was no effect on capillary recruitment. NOS inhibition attenuated (P < 0.05) the increase in contraction-stimulated skeletal muscle glucose uptake by ~35%, without affecting AMP-activated protein kinase (AMPK) activation.

CONCLUSIONS: NOS inhibition attenuated increases in skeletal muscle glucose uptake during contraction without influencing capillary recruitment, suggesting that NO is critical for part of the normal increase in skeletal muscle fiber glucose uptake during contraction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Findings recently have shown coupling protein-3 (UCP3) content to be decreased in the skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). Uncoupling protein-3 mRNA exists as two isoforms: long (UCP3L) and short (UCP3S). The UCP3 protein is expressed the least in oxidative and the most in glycolytic muscle fibers. Levels of UCP3 have been associated positively with intramyocellular triglyceride (IMTG) contents in conditions of altered fatty acid metabolism. As a source for muscle free fatty acid metabolism, IMTG is decreased in COPD. The current study completely characterized all the parameters of UCP3 expression (ie, UCP3L and UCP3S mRNA expression in whole muscle samples) and UCP3 protein content as well as IMTG content in the different fiber types in patients with COPD and healthy control subjects.

Methods: Using real-time polymerase chain reaction, UCP3 gene expression was quantified. Skeletal muscle fiber type and UCP3 protein and IMTG content were measured using immunofluorescence and Oil red oil staining, respectively.

Results: The findings showed that UCP3L mRNA expression was 44% lower (P < .005) in the patients with COPD than in the control subjects, whereas the UCP3S mRNA content was similar in the two groups. As compared with control subjects, UCP3 protein content was decreased by 89% and 83% and the IMTG content by 64% and 54%, respectively, in types I and IIa fibers (P < .0167) of patients with COPD, whereas they were unchanged in IIx fibers.

Conclusions: The reduced UCP3 and IMTG content in the more oxidative fibers may be linked to the altered muscle fatty acid metabolism associated with COPD. Further studies are required to determine the exact role and clinical relevance of the reduced UCP3 content in patients with COPD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Skeletal muscles contain several subtypes of myofibers that differ in contractile and metabolic properties. Transcriptional control of fiber-type specification and adaptation has been intensively investigated over the past several decades. Recently, microRNA (miRNA)-mediated posttranscriptional gene regulation has attracted increasing attention. MiR-23a targets key molecules regulating contractile and metabolic properties of skeletal muscle, such as myosin heavy-chains and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α). In the present study, we analyzed the skeletal muscle phenotype of miR-23a transgenic (miR-23a Tg) mice to explore whether forced expression of miR-23a affects markers of mitochondrial content, muscle fiber composition, and muscle adaptations induced by 4 weeks of voluntary wheel running. When compared with wild-type mice, protein markers of mitochondrial content, including PGC-1α, and cytochrome c oxidase complex IV (COX IV), were significantly decreased in the slow soleus muscle, but not the fast plantaris muscle of miR-23a Tg mice. There was a decrease in type IId/x fibers only in the soleus muscle of the Tg mice. Following 4 weeks of voluntary wheel running, there was no difference in the endurance exercise capacity as well as in several muscle adaptive responses including an increase in muscle mass, capillary density, or the protein content of myosin heavy-chain IIa, PGC-1α, COX IV, and cytochrome c. These results show that miR-23a targets PGC-1α and regulates basal metabolic properties of slow but not fast twitch muscles. Elevated levels of miR-23a did not impact on whole body endurance capacity or exercise-induced muscle adaptations in the fast plantaris muscle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Skeletal muscles contain several subtypes of myofibers that differ in contractile and metabolic properties. Transcriptional control of fiber-type specification and adaptation has been intensively investigated over the past several decades. Recently, microRNA (miRNA)-mediated posttranscriptional gene regulation has attracted increasing attention. MiR-23a targets key molecules regulating contractile and metabolic properties of skeletal muscle, such as myosin heavy-chains and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α). In the present study, we analyzed the skeletal muscle phenotype of miR-23a transgenic (miR-23a Tg) mice to explore whether forced expression of miR-23a affects markers of mitochondrial content, muscle fiber composition, and muscle adaptations induced by 4 weeks of voluntary wheel running. When compared with wild-type mice, protein markers of mitochondrial content, including PGC-1α, and cytochrome c oxidase complex IV (COX IV), were significantly decreased in the slow soleus muscle, but not the fast plantaris muscle of miR-23a Tg mice. There was a decrease in type IId/x fibers only in the soleus muscle of the Tg mice. Following 4 weeks of voluntary wheel running, there was no difference in the endurance exercise capacity as well as in several muscle adaptive responses including an increase in muscle mass, capillary density, or the protein content of myosin heavy-chain IIa, PGC-1α, COX IV, and cytochrome c. These results show that miR-23a targets PGC-1α and regulates basal metabolic properties of slow but not fast twitch muscles. Elevated levels of miR-23a did not impact on whole body endurance capacity or exercise-induced muscle adaptations in the fast plantaris muscle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Maternal antenatal creatine supplementation protects the brain, kidney, and diaphragm against the effects of birth asphyxia in the spiny mouse. In this study, we examined creatine's potential to prevent damage to axial skeletal muscles.

METHODS: Pregnant spiny mice were fed a control or creatine-supplemented diet from mid-pregnancy, and 1 d before term (39 d), fetuses were delivered by c-section with or without 7.5 min of birth asphyxia. At 24 h or 33 ± 2 d after birth, gastrocnemius muscles were obtained for ex-vivo study of twitch-tension, muscle fatigue, and structural and histochemical analysis.

RESULTS: Birth asphyxia significantly reduced cross-sectional area of all muscle fiber types (P < 0.05), and increased fatigue caused by repeated tetanic contractions at 24 h of age (P < 0.05). There were fewer (P < 0.05) Type I and IIa fibers and more (P < 0.05) Type IIb fibers in male gastrocnemius at 33 d of age. Muscle oxidative capacity was reduced (P < 0.05) in males at 24 h and 33 d and in females at 24 h only. Maternal creatine treatment prevented all asphyxia-induced changes in the gastrocnemius, improved motor performance.

CONCLUSION: This study demonstrates that creatine loading before birth protects the muscle from asphyxia-induced damage at birth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Examines the relationship between the magnitude of the relative slow component (SC) of pulmonary oxygen uptake VO[sub 2], citrate synthase activity, UCP2 and UCP3 mRNA levels and muscle fiber composition in both endurance-trained and recreationally active subjects. Magnitude of the relative SC of the Tr group; Indicators of aerobic fitness; High negative correlations between the magnitude of the relative SC and citrate synthase activity and VO[sub 2] peak.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Age-related skeletal muscle sarcopenia is linked with increases in falls, fractures, and death and therefore has important socioeconomic consequences. The molecular mechanisms controlling age-related muscle loss in humans are not well understood, but are likely to involve multiple signaling pathways. This study investigated the regulation of several genes and proteins involved in the activation of key signaling pathways promoting muscle hypertrophy, including GH/STAT5, IGF-1/Akt/GSK-3β/4E-BP1, and muscle atrophy, including TNFα/SOCS-3 and Akt/FKHR/atrogene, in muscle biopsies from 13 young (20 ± 0.2 years) and 16 older (70 ± 0.3 years) males. In the older males compared to the young subjects, muscle fiber cross-sectional area was reduced by 40–45% in the type II muscle fibers. TNFα and SOCS-3 were increased by 2.8 and 1.5 fold, respectively. Growth hormone receptor protein (GHR) and IGF-1 mRNA were decreased by 45%. Total Akt, but not phosphorylated Akt, was increased by 2.5 fold, which corresponded to a 30% reduction in the efficiency of Akt phosphorylation in the older subjects. Phosphorylated and total GSK-3β were increased by 1.5 and 1.8 fold, respectively, while 4E-BP1 levels were not changed. Nuclear FKHR and FKHRL1 were decreased by 73 and 50%, respectively, with no changes in their atrophy target genes, atrogin-1 and MuRF1. Myostatin mRNA and protein levels were significantly elevated by 2 and 1.4 fold. Human sarcopenia may be linked to a reduction in the activity or sensitivity of anabolic signaling proteins such as GHR, IGF-1, and Akt. TNFα, SOCS-3, and myostatin are potential candidates influencing this anabolic perturbation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fifteen trained male cyclists had muscle biopsies and performed cycling tests to determine if relationships exist between the oxygen uptake response and various intramuscular variables. It was found that muscle oxidative capacity is better able to explain the oxygen uptake response during high intensity cycling than muscle fiber distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has recently been shown that food intake is not essential for the resynthesis of the stores of muscle glycogen in fasted animals recovering from high-intensity exercise. Because the effect of diabetes on this process has never been examined before, we undertook to explore this issue. To this end, groups of rats were treated with streptozotocin (60 mg/kg body mass ip) to induce mild diabetes. After 11 days, each animal was fasted for 24 h before swimming with a lead weight equivalent to 9% body mass attached to the tail. After exercise, the rate and the extent of glycogen repletion in muscles were not affected by diabetes, irrespective of muscle fiber composition. Consistent with these findings, the effect of exercise on the phosphorylation state of glycogen synthase in muscles was only minimally affected by diabetes. In contrast to its effects on nondiabetic animals, exercise in fasted diabetic rats was accompanied by a marked fall in hepatic glycogen levels, which, surprisingly, increased to preexercise levels during recovery despite the absence of food intake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: The short latency stretch reflex (SLR) is well described, but the stimulus that evokes the SLR remains elusive. One hypothesis states that reflex size is proportional to muscle fiber stretch, so in this study we examined the relationship between these 2 parameters in human triceps surae muscles. METHODS: Achilles tendon taps and dorsiflexion stretches with different amplitudes and preactivation torques were applied to 6 participants while electromyography and muscle fascicle length changes were recorded in soleus and medial gastrocnemius (MG). RESULTS: In response to tendon taps, neither fascicle length nor velocity changes were correlated with SLR size in either muscle, but accelerometer peaks were observed immediately after hammer-tendon contact. Similar results were obtained after dorsiflexion stretches. CONCLUSION: Muscle fascicle stretch is poorly correlated with SLR size, regardless of perturbation parameters. We attribute the SLR trigger to the transmission of vibration through the lower limb, rather than muscle fiber stretch. Muscle Nerve, 2015.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PGC-1) can induce mitochondria biogenesis and has been implicated in the development of oxidative type I muscle fibers. The PPAR isoforms α, β/δ, and γ control the transcription of genes involved in fatty acid and glucose metabolism. As endurance training increases skeletal muscle mitochondria and type I fiber content and fatty acid oxidative capacity, our aim was to determine whether these increases could be mediated by possible effects on PGC-1 or PPAR-α, -β/δ, and -γ. Seven healthy men performed 6 weeks of endurance training and the expression levels of PGC-1 and PPAR-α, -β/δ, and -γ mRNA as well as the fiber type distribution of the PGC-1 and PPAR-α proteins were measured in biopsies from their vastus lateralis muscle. PGC-1 and PPAR-α mRNA expression increased by 2.7- and 2.2-fold (P < 0.01), respectively, after endurance training. PGC-1 expression was 2.2- and 6-fold greater in the type IIa than in the type I and IIx fibers, respectively. It increased by 2.8-fold in the type IIa fibers and by 1.5-fold in both the type I and IIx fibers after endurance training (P < 0.015). PPAR-α was 1.9-fold greater in type I than in the II fibers and increased by 3.0-fold and 1.5-fold in these respective fibers after endurance training (P < 0.001). The increases in PGC-1 and PPAR-α levels reported in this study may play an important role in the changes in muscle mitochondria content, oxidative phenotype, and sensitivity to insulin known to be induced by endurance training.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mild physical activity performed immediately after a bout of intense exercise in fasting humans results in net glycogen breakdown in their slow oxidative (SO) muscle fibers and glycogen repletion in their fast twitch (FT) fibers. Because several animal species carry a low proportion of SO fibers, it is unclear whether they can also replenish glycogen in their FT fibers under these conditions. Given that most skeletal muscles in rats are poor in SO fibers (<5%), this issue was examined using groups of 24-h fasted Wistar rats (n = 10) that swam for 3 min at high intensity with a 10% weight followed by either a 60-min rest (passive recovery, PR) or a 30-min swim with a 0.5% weight (active recovery, AR) preceding a 30-min rest. The 3-min sprint caused 61–79% glycogen fall across the muscles examined, but not in the soleus (SOL). Glycogen repletion during AR without food was similar to PR in the white gastrocnemius (WG), where glycogen increased by 71%, and less than PR in both the red and mixed gastrocnemius (RG, MG). Glycogen fell by 26% during AR in the SOL. Following AR, glycogen increased by 36%, 87%, and 37% in the SOL, RG, and MG, respectively, and this was accompanied by the sustained activation of glycogen synthase and inhibition of glycogen phosphorylase in the RG and MG. These results suggest that mammals with a low proportion of SO fibers can also replenish the glycogen stores of their FT fibers under extreme conditions combining physical activity and fasting.