91 resultados para Muscle and tibiotarsus

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser563 and Ser660, the PKA regulatory sites, and Ser565, the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by ~80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser563 and Ser660 phosphorylation were increased by 27% at 15 min (P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser565 phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser660 was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser660 but not Ser563 phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser660 phosphorylation. Taken together, these data indicate that HSL activity is maintained in the face of AMPK activation as a result of elevated HSL Ser660 phosphorylation in adipose tissue but not skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antiproliferative and anti-inflammatory properties of conjugated linoleic acid (CLA) make it a potentially novel treatment in chronic inflammatory muscle wasting disease, particularly cancer cachexia. Human primary muscle cells were grown in coculture with MIA PaCa-2 pancreatic tumor cells and exposed to varying concentrations of c9,t11 and t10,c12 CLA. Expression of myogenic (Myf5, MyoD, myogenin, and myostatin) and inflammatory genes (CCL-2, COX-2, IL-8, and TNF-) were measured by real-time PCR. The t10,c12 CLA isomer, but not the c9,t11 isomer, significantly decreased MIA PaCa-2 proliferation by between 15% and 19%. There was a marked decrease in muscle MyoD and myogenin expression (78% and 62%, respectively), but no change in either Myf5 or myostatin, in myotubes grown in coculture with MIA PaCa-2 cells. CLA had limited influence on these responses. A similar pattern of myogenic gene expression changes was observed in myotubes treated with TNF- alone. Several-fold significant increases in CCL-2, COX-2, IL-8, and TNF- expression in myotubes were observed with MIA PaCa-2 coculture. The c9,t11 CLA isomer significantly decreased basal expression of TNF- in myotubes and could ameliorate its tumor-induced rise. The study provides insight into the anti-inflammatory and antiproliferative actions of CLA and its application as a therapeutic agent in inflammatory disease states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to examine the relationship between skeletal muscle monocarboxylate transporters 1 and 4 (MCT1 and MCT4) expression, skeletal muscle oxidative capacity and endurance performance in trained cyclists. Ten well-trained cyclists (mean ± SD; age 24.4 ± 2.8 years, body mass 73.2 ± 8.3 kg, VO2max 58 ± 7 ml kg−1 min−1) completed three endurance performance tasks [incremental exercise test to exhaustion, 2 and 10 min time trial (TT)]. In addition, a muscle biopsy sample from the vastus lateralis muscle was analysed for MCT1 and MCT4 expression levels together with the activity of citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD). There was a tendency for VO2max and peak power output obtained in the incremental exercise test to be correlated with MCT1 (r = −0.71 to −0.74; P < 0.06), but not MCT4. The average power output (P average) in the 2 min TT was significantly correlated with MCT4 (r = −0.74; P < 0.05) and HAD (r = −0.92; P < 0.01). The P average in the 10 min TT was only correlated with CS activity (r = 0.68; P < 0.05). These results indicate the relationship between MCT1 and MCT4 as well as cycle TT performance may be influenced by the length and intensity of the task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycogen is a cellular energy store that is crucial for whole body energy metabolism, metabolic regulation and exercise performance. To understand glycogen structure we have purified glycogen particles from rat liver and human skeletal muscle tissues and compared their biophysical properties with those found in commercial glycogen preparations. Ultrastructural analysis of commercial liver glycogens fails to reveal the classical α-rosette structure but small irregularly shaped particles. In contrast, commercial slipper limpet glycogen consists of β-particles with similar branching and chain lengths to purified rat liver glycogen together with a tendency to form small α-particles, and suggest it should be used as a source of glycogen for all future studies requiring a substitute for mammalian liver glycogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, AHI1 and NDRG2 gene function in the insulin signalling pathways regulating skeletal muscle homeostasis was investigated. Findings implicate AHI1 in the regulation of insulin-stimulated glucose transport and the development of insulin resistance, whilst associating NDRG2 with the regulation of myoblast proliferation and differentiation; possible via interactions with PICK1 and arfaptin2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes, obesity, and cancer affect upward of 15% of the world’s population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we show that hedgehog signaling rewires cellular metabolism. We identify a cilium-dependent Smo-Ca2+-Ampk axis that triggers rapid Warburg-like metabolic reprogramming within minutes of activation and is required for proper metabolic selectivity and flexibility. We show that Smo modulators can uncouple the Smo-Ampk axis from canonical signaling and identify cyclopamine as one of a new class of “selective partial agonists,” capable of concomitant inhibition of canonical and activation of noncanonical hedgehog signaling. Intriguingly, activation of the Smo-Ampk axis in vivo drives robust insulin-independent glucose uptake in muscle and brown adipose tissue. These data identify multiple noncanonical endpoints that are pivotal for rational design of hedgehog modulators and provide a new therapeutic avenue for obesity and diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle makes up approximately 40% of the total body mass, providing structural support and enabling the body to maintain posture, to control motor movements and to store energy. It therefore plays a vital role in whole body metabolism. Skeletal muscle displays remarkable plasticity and is able to alter its size, structure and function in response to various stimuli; an essential quality for healthy living across the lifespan. Exercise is an important stimulator of extracellular and intracellular stress signals that promote positive adaptations in skeletal muscle. These adaptations are controlled by changes in gene transcription and protein translation, with many of these molecules identified as potential therapeutic targets to pharmacologically improve muscle quality in patient groups too ill to exercise. MicroRNAs (miRNAs) are recently identified regulators of numerous gene networks and pathways and mainly exert their effect by binding to their target messenger RNAs (mRNAs), resulting in mRNA degradation or preventing protein translation. The role of exercise as a regulatory stimulus of skeletal muscle miRNAs is now starting to be investigated. This review highlights our current understanding of the regulation of skeletal muscle miRNAs with exercise and disease as well as how they may control skeletal muscle health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Age-related muscle wasting has been strongly implicated with falls and fractures in the elderly, but it has also been associated with cognitive decline and dementia. Progressive resistance training (PRT) and adequate dietary protein are recognised as important contributors to the maintenance of muscle health and function in older adults. However, both factors also have the potential to improve brain function and prevent cognitive decline via several pathways, including the regulation of various growth and neurotrophic factors [insulin-like growth factor-1 (IGF-1)]; brain-derived growth factor (BDNF)] and/or the modulation of systemic inflammation. The primary aim of this study is to investigate whether a modest increase in dietary protein achieved through the consumption of lean red meat three days per week, when combined with PRT, can enhance muscle mass, size and strength and cognitive function in community-dwelling older people. METHODS/DESIGN: The study design is a 48-week randomised controlled trial consisting of a 24-week intervention with a 24-week follow-up. Men and women (n=152) aged 65 years and over residing in the community will be randomly allocated to: 1) PRT and provided with 220 g (raw weight) of lean red meat to be cooked and divided into two 80 g servings on each of the three days that they complete their exercise session, or 2) control PRT in which participants will be provided with and advised to consume ≥1 serving (~1/2 cup) of rice and/or pasta or 1 medium potato on each of the three training days. The primary outcome measures will be muscle mass, size and strength and cognitive function. Secondary outcomes will include changes in: muscle function, neural health (corticospinal excitability and inhibition and voluntary activation), serum IGF-1 and BDNF, adipokines and inflammatory markers, fat mass and inter-/intra-muscular fat, blood pressure, lipids and health-related quality of life. All outcome measures will be assessed at baseline and 24 weeks, with the exception of cognitive function and the various neurobiological and inflammatory markers which will also be assessed at week 12. DISCUSSION: The findings from this study will provide important new information on whether a modest increase in dietary protein achieved through the ingestion of lean red meat can enhance the effects of PRT on muscle mass, size and strength as well as cognitive function in community-dwelling older adults. If successful, the findings will form the basis for more precise exercise and nutrition guidelines for the management and prevention of age-related changes in muscle and neural health and cognitive function in the elderly. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry: ACTRN12613001153707 . Date registered 16(th) October, 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regular exercise stimulates numerous structural, metabolic, and morphological adaptations in skeletal muscle. These adaptations are vital to maintain human health over the life span. Exercise is therefore seen as a primary intervention to reduce the risk of chronic disease. Advances in molecular biology, biochemistry, and bioinformatics, combined with exercise physiology, have identified many key signaling pathways as well as transcriptional and translational processes responsible for exercise-induced adaptations. Noncoding RNAs, and specifically microRNAs (miRNAs), constitute a new regulatory component that may play a role in these adaptations. The short single-stranded miRNA sequences bind to the 3' untranslated region of specific messenger RNAs (mRNAs) on the basis of sequence homology. This results in the degradation of the target mRNA or the inhibition of protein translation causing repression of the corresponding protein. While tissue specificity or enrichment of certain miRNAs makes them ideal targets to manipulate and understand tissue development, function, health, and disease, other miRNAs are ubiquitously expressed; however, it is uncertain whether their mRNA/protein targets are conserved across different tissues. miRNAs are stable in plasma and serum and their altered circulating expression levels in disease conditions may provide important biomarker information. The emerging research into the role that miRNAs play in exercise-induced adaptations has predominantly focused on the miRNA species that are regulated in skeletal muscle or in circulation. This chapter provides an overview of these current research findings, highlights the strengths and weaknesses identified to date, and suggests where the exercise-miRNA field may move into the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Dietary fatty acids may be important in regulating gene expression. However, little is known about the effect of changes in dietary fatty acids on gene regulation in human skeletal muscle.
Objective: The objective was to determine the effect of altered dietary fat intake on the expression of genes encoding proteins necessary for fatty acid transport and &szlig;-oxidation in skeletal muscle.
Design: Fourteen well-trained male cyclists and triathletes with a mean (&plusmn; SE) age of 26.9 &plusmn; 1.7 y, weight of 73.7 &plusmn; 1.7 kg, and peak oxygen uptake of 67.0 &plusmn; 1.3 mL &dot; kg-1 &dot; min-1 consumed either a high-fat diet (HFat: > 65% of energy as lipids) or an isoenergetic high-carbohydrate diet (HCho: 70–75% of energy as carbohydrate) for 5 d in a crossover design. On day 1 (baseline) and again after 5 d of dietary intervention, resting muscle and blood samples were taken. Muscle samples were analyzed for gene expression [fatty acid translocase (FAT/CD36), plasma membrane fatty acid binding protein (FABPpm), carnitine palmitoyltransferase I (CPT I), &szlig;-hydroxyacyl-CoA dehydrogenase (&szlig;-HAD), and uncoupling protein 3 (UCP3)] and concentrations of the proteins FAT/CD36 and FABPpm.
Results: The gene expression of FAT/CD36 and &szlig; -HAD and the gene abundance of FAT/CD36 were greater after the HFat than after the HCho diet (P < 0.05). Messenger RNA expression of FABPpm, CPT I, and UCP-3 did not change significantly with either diet.
Conclusions
: A rapid and marked capacity for changes in dietary fatty acid availability to modulate the expression of mRNA-encoding proteins is necessary for fatty acid transport and oxidative metabolism. This finding is evidence of nutrient-gene interactions in human skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As muscles become larger and stronger during growth and in response to increased loading, bones should adapt by adding mass, size, and strength. In this unilateral model, we tested the hypothesis that (1) the relationship between muscle size and bone mass and geometry (nonplaying arm) would not change during different stages of puberty and (2) exercise would not alter the relationship between muscle and bone, that is, additional loading would result in a similar unit increment in both muscle and bone mass, bone size, and bending strength during growth. We studied 47 competitive female tennis players aged 8–17 years. Total, cortical, and medullary cross-sectional areas, muscle area, and the polar second moment of area (Ip) were calculated in the playing and nonplaying arms using magnetic resonance imaging (MRI); BMC was assessed by DXA. Growth effects: In the nonplaying arm in pre-, peri- and post-pubertal players, muscle area was linearly associated BMC, total and cortical area, and Ip (r = 0.56–0.81, P < 0.09 to < 0.001), independent of age. No detectable differences were found between pubertal groups for the slope of the relationship between muscle and bone traits. Post-pubertal players, however, had a higher BMC and cortical area relative to muscle area (i.e., higher intercept) than pre- and peri-pubertal players (P < 0.05 to < 0.01), independent of age; pre- and peri-pubertal players had a greater medullary area relative to muscle area than post-pubertal players (P < 0.05 to < 0.01). Exercise effects: Comparison of the side-to-side differences revealed that muscle and bone traits were 6–13% greater in the playing arm in pre-pubertal players, and did not increase with advancing maturation. In all players, the percent (and absolute) side-to-side differences in muscle area were positively correlated with the percent (and absolute) differences in BMC, total and cortical area, and Ip (r = 0.36–0.40, P < 0.05 to < 0.001). However, the side-to-side differences in muscle area only accounted for 11.8–15.9% of the variance of the differences in bone mass, bone size, and bending strength. This suggests that other factors associated with loading distinct from muscle size itself contributed to the bones adaptive response during growth. Therefore, the unifying hypothesis that larger muscles induced by exercise led to a proportional increase in bone mass, bone size, and bending strength appears to be simplistic and denies the influence of other factors in the development of bone mass and bone shape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on subsequent mRNA abundance of a subset of carbohydrate (CHO)- and fat-related genes. Seven subjects consumed either a low- (LOW; 0.7 g/kg body mass CHO) or high- (HIGH; 10 g/kg body mass CHO) CHO diet for 48 h after performing an exhaustive exercise bout to deplete muscle glycogen stores. After intervention, resting muscle and blood samples were taken. Muscle was analyzed for the gene abundances of GLUT4, glycogenin, pyruvate dehydrogenase kinase-4 (PDK-4), fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase I (CPT I), hormone-sensitive lipase (HSL), β-hydroxyacyl-CoA dehydrogenase (΄β-HAD), and uncoupling binding protein-3 (UCP3), and blood samples for glucose, insulin, and free fatty acid (FFA) concentrations. Glycogen-depleting exercise and HIGH-CHO resulted in a 300% increase in muscle glycogen content (P < 0.001) relative to the LOW-CHO condition. FFA concentrations were twofold higher after LOW- vs. HIGH-CHO (P < 0.05). The exercise-diet manipulation exerted a significant effect on transcription of all carbohydrate-related genes, with an increase in GLUT4 and glycogenin mRNA abundance and a reduction in PDK-4 transcription after HIGH-CHO (all P < 0.05). FAT/CD36 (P < 0.05) and UCP3 (P < 0.01) gene transcriptions were increased following LOW-CHO. We conclude that 1) there was a rapid capacity for a short-term exercise and diet intervention to exert coordinated changes in the mRNA transcription of metabolic related genes, and 2) genes involved in glucose regulation are increased following a high-carbohydrate diet.