76 resultados para Multi-scale hierarchical framework

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is predicted to impact countries, regions and localities differently. However, common to the predicted impacts is a global trend toward increased levels of carbon dioxide and rising sea levels. Governments and communities need to take into account the likely impacts of climate on the landscape, both built and natural. There is a growing and significant body of climate change research. Much of this information produced by domain experts for a range of disciplines is complex and difficult for planners, decision makers and communities to act upon. The need to communicate often complex scientific information which can be used to assist in the planning cycle is a key challenge. This paper draws from a range of international examples of the use of visualisation in the context of landscape planning to communicate climate change impact and adaptation options within the context of the planning cycle. Missing from the literature, however, is a multi-scalar approach which allows decision makers, planners and communities to seamlessly explore scenarios at their special level of interest, as well as to collectively understand what is driving these at a larger scale, and what the implications are at ever more local levels. Visualisation tools such as digital globes provide one way to bring together multi-scaled spatial–temporal datasets. We present an initial development with this goal in mind. Future research is required to determine the best tools for communicating particular complex scientific data and also to better understand how visualisation can be used to improve the landscape planning process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uniform hydrangea-like multi-scale carbon hollow submicron spheres (HCSSg) are fabricated by a simple hydrothermal method using glucose as carbon source and fibrous silicon dioxides spheres as shape guide. Structure characterization suggests that petal-like partially graphitized carbon nanosheets with the thickness of about 10 nm arranged in three dimensions (3D) to form the hydrangea-like hollow spheres (size ranging from 250 to 500 nm) with mesoporous channels, which can be conducive to be a high specific surface area (934 m2 g-1) and bulk density (0.87 cm g-3), hierarchical pores structure with good conductivity. As a result, the HCSSg has been demonstrated to be a supercapacitor electrode material with high gravimetric (386 F g-1 at 0.2 A g-1) and outstanding volumetric (335 F cm-3) capacitance, good rate capability and cycling stability with 94% capacitance retention after 5000 cycles in aqueous electrolytes, thus suggesting its application potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, we proposed the concept of connectivity to obtain discriminating shape descriptors. In this paper, we use connectivity to obtain superior distance histograms for multi-scale images. Experiments are performed to evaluate the distance histograms, based on connectivity, for shape-based retrieval of multi-scale images. Item S8 within the MPEG-7 still images content set is used for performing experiments. Experimental results show that the proposed method enhances retrieval performance significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of possibilities given by the developed Cellular Automata–Finite Element (CAFE) multi-scale model for prediction of the initiation and propagation of micro-shear bands and shear bands in metallic materials subjected to plastic deformation is described in the paper. Particular emphasis in defining the criterion for initiation of micro-shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of those phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi-scale model of strain localization. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the paper. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is presented in the paper as well. In this approach remeshing becomes possible and mesh distortion, which limits application of the CAFE method to simple deformation processes, is eliminated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation of the application of a multi scale CAFE model to prediction of the strain localization phenomena in industrial processes, such as extrusion, is presented in this work. Extrusion involves the formation of a strong strain localization zone, which influences the final product microstructure and may lead to a coarse grain layer close to the surface. Modelling of the shape of this zone and prediction of the strain magnitude will allow computer aided design of the extrusion process and optimisation of the technological parameters with respect to the microstructure and properties of the products. Thus, the particular objective of this work is comparison of the FE and CAFE predictions of strain localization in the shear zone area in extrusion. Advantages and disadvantages of the developed CAFE model are also discussed on the basis of the simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract A detailed description of possibilities given by the developed Cellular Automata—Finite Element (CAFE) multi scale model for prediction of the initiation and propagation of micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented in the work. Particular emphasis in defining the criterion for initiation of micro shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of these phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi scale model of strain localization phenomena. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the work. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is a subject of this work as well. In the developed model remeshing becomes possible and difficulties limiting application of the CAFE method to simple deformation processes are solved. Obtained results of numerical simulaA detailed description of possibilities given by the developed Cellular Automata—Finite Element (CAFE) multi scale model for prediction of the initiation and propagation of micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented in the work. Particular emphasis in defining the criterion for initiation of micro shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of these phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi scale model of strain localization phenomena. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the work. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is a subject of this work as well. In the developed model remeshing becomes possible and difficulties limiting application of the CAFE method to simple deformation processes are solved. Obtained results of numerical simulations are compared with the experimental results of cold rolling process to show good predicative capabilities of the developed model.tions are compared with the experimental results of cold rolling process to show good predicative capabilities of the developed model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual Phase (DP) steel one of the Advanced High Strength Steels (AHSS) has a two phase microstructure where soft and hard phase acts together to offer a high strength composite effect. The high strength, however, must be balanced with ductility so that complex parts and designs can be manufactured from AHSS sheets. However, during forming certain grades of DP steel a sudden crack can occur without any intimation of necking. Thus, due to this abnormal forming behaviour, is difficult to accurately predict because most classical modelling approaches are not designed for such micro-structurally heterogeneous materials. These modelling approaches are generally based on an average representation of the material behaviour in a continuum mechanics formulation. This works for materials that are homogenous, or at least could be assumed to be homogenous at scales lower than the naked eye can see. However, for a material like AHSS, the microstructure plays a significant role in dictating the mechanical behaviour at the macro-scale. This paper studies the multi-scale modelling ofDP590 steel. It is found that the sufficient accuracy can be achieved from multi-scale modelling while comparing with the experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conceptual knowledge management (KM) framework was developed and tested. The social bond combined with the expertise of a Community of Practice (CoP) constitutes a bottom-up aproach to KM, at the same time influencing top-down KM efforts by managers. A successful feedback loop between CoP and Management assists in establishing a collaborative and integrated top-down/bottom-up KM strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced high strength steel sheets are one of the higher strength advance material developed by the steel industry for automotive bodies. One of the categories of this advanced high strength steel is Dual Phase (DP) steel. This steel consists of a two phase microstructure where soft and hard phase acts together to offer a high strength composite effect. The combination of high strength and ductility exhibited by these sheets allows the design and manufacture of complex parts. However, during forming certain grades of DP steel sudden cracking can occur without any intimation of necking. This abnormal forming behavior is difficult to accurately predict because most classical modelling approaches are not designed for such micro-structurally heterogeneous materials. These modelling approaches are generally based on an average representation of the material behaviour in a continuum mechanics formulation. This works for materials that are homogenous, or at least could be assumed to be homogenous at scales lower than the naked eye can see. However, for a material like advanced high strength steel, the microstructure plays a significant role in dictating the mechanical behavior at the macro-scale. This paper studies the forming and fracture behavior through multi-scale modeling of DPO590 steel. It is found that the sufficient accuracy can be achieved from multi-scale modeling when comparing with experiments.