108 resultados para Mouse embryos

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) and retinoic acid (RA) signaling have been associated with influencing lipid metabolism. We hypothesized that modulation of these pathways could modify lipid abundance in developing vertebrates and that these pathways could have a combinatorial effect on lipid levels. Zebrafish embryos were exposed to chemical treatments altering the activity of the ECS and RA pathway. Embryos were stained with the neutral lipid dye Oil-Red-O (ORO) and underwent whole-mount in situ hybridization. Mouse 3T3-L1 fibroblasts were differentiated under exposure to RA modulating chemicals and subsequently stained with ORO and analyzed for gene expression by qRT-PCR. ECS activation and RA exposure increased lipid abundance and the expression of lipoprotein lipase. Additionally, RA treatment increased expression of CCAAT/enhancer binding protein alpha. Both ECS receptors and RA receptor subtypes were separately involved in modulating lipid abundance. Finally, increased ECS or RA activity ameliorated the reduced lipid abundance caused by peroxisome proliferator-activated receptor gamma (PPARγ) inhibition. Therefore, the ECS and RA pathway influence lipid abundance in zebrafish embryos and have an additive effect when treated simultaneously. Furthermore, we demonstrated that these pathways act downstream or independently of PPARγ to influence lipid levels. Our study shows for the first time that the RA and ECS pathways have additive function in lipid abundance during vertebrate development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the mRNA expression of the atrial natriuretic peptide (ANP) system (peptide and receptors) during water deprivation in the spinifex hopping mouse, Notomys alexis, a native of central and western Australia that is well adapted to survive in arid environments. Initially, ANP, NPR-A and NPR-C cDNAs (partial for receptors) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. Using a semi-quantitative multiplex PCR technique, the expression of cardiac ANP mRNA and renal ANP, NPR-A, and NPR-C mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control mice (access to water). The levels of ANP mRNA expression in the heart remained unchanged, but in the kidney ANP mRNA levels were increased in the 7-day water-deprived mice, and were significantly decreased in the 14-day water-deprived mice. NPR-A mRNA levels were significantly higher in 7-day water-deprived mice while no change for NPR-A mRNA expression was observed in 14-day water-deprived mice. No variation in NPR-C mRNA levels was observed. This study shows that water deprivation differentially affects the expression of the ANP system, and that renal ANP expression is more important than cardiac ANP in the physiological adjustment to water deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of water deprivation on the expression of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) mRNA, and the ability of NPR-B to generate cGMP in the Spinifex Hopping mouse, Notomys alexis. This rodent is a native of central and western Australia that is well adapted to survive in arid environments. Initially, CNP and NPR-B cDNAs (partial for NPR-B) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. RT-PCR analysis showed CNP mRNA expression in the kidney, proximal and distal colon and small intestine, whilst NPR-B mRNA expression was found in the kidney, proximal and distal colon and the atria. Using a semi-quantitative multiplex PCR technique, the expression of renal CNP and NPR-B mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control hopping mice (access to water). Water deprivation significantly decreased the relative levels of CNP and NPR-B mRNA expression in both the 7- and 14-day water-deprived hopping mice, when compared to control hopping mice. In contrast, the ability of CNP to stimulate cGMP production was significantly increased after 14 days of water deprivation. This study shows that alterations in the renal CNP/NPR-B system may be an important physiological adjustment when water is scarce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanylin and uroguanylin are peptides that activate guanylyl cyclase C (GC-C) receptors in the intestine and kidney, which causes an increase in the excretion of salt and water. The Spinifex hopping mouse, Notomys alexis, is a desert rodent that can survive for extended periods without free access to water and it was hypothesised that to conserve water, the expression of guanylin, uroguanylin, and GC-C would be down-regulated to reduce the excretion of water in urine and faeces. Accordingly, this study examined the expression of guanylin, uroguanylin, and GC-C mRNA in Notomys under normal (access to water) and water-deprived conditions. Initially, guanylin and uroguanylin cDNAs encoding the full open reading frame were cloned and sequenced. A PCR analysis showed guanylin and uroguanylin mRNA expression in the small intestine, caecum, proximal and distal colon, heart, and kidney. In addition, a partial GC-C cDNA was obtained and GC-C mRNA expression was demonstrated in the proximal and distal colon, but not the kidney. Subsequently, a semi-quantitative PCR method showed that water deprivation in Notomys caused a significant increase in guanylin and uroguanylin mRNA expression in the distal colon, and in guanylin and GC-C mRNA expression in the proximal colon. No significant difference in guanylin and uroguanylin mRNA expression was observed in the kidney. The results of this study indicate that there is, in fact, an up-regulation of the colonic guanylin system in Notomys after 7 days of water deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomys novaehollandiae is 'Endangered' in Victoria, where it is presently considered to be extant at only three localities Loch Sport, Providence Ponds, and Wilsons Promontory. This study aimed to determine indicators of suitable habitat for the species that could assist in identifying potential habitat and sites for planned re-introductions as part of a recovery program. Vegetation and site data (soils, topography, rainfall, fire age-time since fire) were assessed at localities where P. novaehollandiae was recorded. The species occurred in five structural vegetation groups - open-forest, woodland, heathland, shrubland, grassland, with the most common being open-forest and woodland. Grassland and shmbland were restricted to coastal sand-dunes in south Gippsland. Understorey vegetation at most sites was dominated by sclerophyllous shrubs ranging in cover from 10 - 70%. Classification of quadrats produced eight floristic groups in which the trend was for quadrats to cluster according to geographical location. Ordination confirmed the classification pattern and vector-fitting produced significant correlations between vector points and five variables: species richness, latitude, longitude, fire age and annual rainfall. The study identified a range of vegetation communities where P. novaehollandiae occurs and provided evidence that the species is not restricted to floristically rich and diverse heathlands. The findings can be used to determine further localities with suitable habitat. However, factors other than vegetation are also likely to be important in predicting suitable habitat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals the natriuretic and guanylin peptides influence renal and intestinal fluid content and electrolyte transport by binding to and activating guanylyl cyclase (GC) receptors that in turn stimulate production of the intracellular second messenger guanosine 3':5'-cyclic monophospate
(cGMP). However, the role of natriuretic and guanylin peptides in desert mammals is not understood. The spinifex hopping-mouse (Notomys alexis), has a suite of behavioural and physiological mechanisms that permits survival for extended periods without access to free water. Because signalling molecules that generate cGMP are known to promote water excretion, it was predicted that natriuretic and guanylin peptide synthesis would be down regulated in water-deprived N. alexis, and thus reduce the amount of water lost in the urine and faeces. However, in the kidney ANP and GC-A mRNA levels were increased in water-deprived mice, but CNP and GC-B mRNA levels were decreased. Water deprivation increased guanylin and uroguanylin mRNA expression in the distal colon, but it remained unchanged in the kidney and proximal colon. The expression of GC-C mRNA increased in the proximal colon but not in the distal colon. This study shows that water deprivation differentially affects the expression of regulatory molecules that stimulate cGMP producti

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective
Various TEL-JAK2 fusions have been identified in patients with lymphoblastic and myeloid leukemias that result in constitutive activation of the JAK2 kinase domain. Such fusions can mediate factor-independent growth of hematopoietic cell lines and induction of malignancy in mouse models.
Materials and methods
To assess whether zebrafish could be utilized as a suitable model for the study of myeloid oncogenesis, we generated a zebrafish tel-jak2a fusion oncoprotein based on that seen in a case of chronic myeloid leukemia. This was transiently expressed in zebrafish embryos under the control of the spi1 promoter, which is strongly active in myeloid precursors.
Results
Visual, histological, and molecular analysis revealed disruption of normal embryonic hematopoiesis, including perturbation of the myeloid and erythroid lineages.
Conclusion
These results indicate that the zebrafish tel-jak2a oncoprotein is functional, and suggest that this organism will be useful for the experimental study of myeloid malignancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brindled mouse is an accurate model of the fatal human X-linked copper deficiency disorder, Menkes disease. Males carrying the mutant allele of the Menkes gene orthologue Atp7a die in the second week of life. To determine whether the genetic defect in the brindled mice could be corrected by expression of the human Menkes gene, male transgenic mice expressing ATP7A from the chicken β-actin composite promoter (CAG) were mated with female carriers of the brindled mutation (Atp7aMo-br). Mutant males carrying the transgene survived and were fertile but the copper defect was not completely corrected. Unexpectedly males corrected with one transgenic line (T25#5) were mottled and resembled carrier females, this effect appeared to be caused by mosaic expression of the transgene. In contrast, males corrected with another line (T22#2) had agouti coats. Copper concentrations in tissues of the rescued mutants also resembled those of the heterozygous females, with high levels in kidney (84.6 ± 4.9 μg/g in corrected males vs. 137.0 ± 44.3 μg/g in heterozygotes) and small intestine (15.6 ± 2.5 μg/g in corrected males vs. 15.7 ± 2.8 μg/g in heterozygotes). The results show that the Menkes defect in mice is corrected by the human Menkes gene and that adequate correction is obtained even when the transgene expression does not match that of the endogenous gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research presented draws from the disciplines of electronics, mechanical engineering, biological sciences and aesthetics to create a handheld tactile mouse which can be used to aid data perception for visually impaired individuals. Visual information is presented to the user by means of small tactile array housed in a modified computer mouse. Varying frequencies of vibrations can represent a number of onscreen environmental changes, such as changes in colour, light intensity or the numerical values. The device is designed to operate either as an assisting tool which operates in conjunction with other interfacing aids, or as a stand alone system with a reduced function set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleotide sequence of the Brachyspira hyodysenteriae ftnA gene, encoding a putative ferritin protein (FtnA), was determined. Analysis of the sequence predicted that this gene encoded a protein of 180 amino acids. RT-PCR and Western blot showed that the ftnA gene was expressed in B. hyodysenteriae, and evidence suggests that FtnA stores iron rather than haem. ftnA was delivered as DNA and recombinant protein vaccines in a mouse model of B. hyodysenteriae infection. Vaccine efficacy was monitored by caecal pathology and quantification of B. hyodysenteriae numbers in the caeca of infected mice by real-time PCR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyaluronan (HA) is a glycosaminoglycan that is synthesized by a family of enzymes called hyaluronan synthases (HASs), of which there are three isoforms (HAS1, 2 and 3) in mammals. The HASs have different tissue expression patterns and function, indicating that synthesis of HA and formation of the HA matrix may be regulated by various factors. The HA matrix has an important role in renal water handling and the production of a concentrated urine. We investigated the distribution of HA and the expression of HAS1, HAS2 and HAS3 mRNAs in the kidney of the Spinifex hopping mouse, Notomys alexis, a native Australian desert rodent that is reported to produce the most concentrated urine of any mammal. After periods of three, seven and fourteen days of water deprivation, the distribution of renal HA changed considerably, and there was a general down-regulation of HAS mRNA expression. It is proposed that the regulation of HA synthesis by the different HAS isoforms during water deprivation in N. alexis, could be influenced by the molecular mass of the HA chains produced by each isoform, followed by the rate at which the individual HAS produces HA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wilson protein (WND; ATP7B) is an essential component of copper homeostasis. Mutations in the ATP7B gene result in Wilson disease, which is characterised by hepatotoxicity and neurological disturbances. In this paper, we provide the first direct biochemical evidence that the WND protein functions as a copper-translocating P-type ATPase in mammalian cells. Importantly, we have shown that the mutation of the conserved Met1386 to Val, in the Atp7B for the mouse model of Wilson disease, toxic milk (tx), caused a loss of Cu-translocating activity. These investigations provide strong evidence that the toxic milk mouse is a valid model for Wilson disease and demonstrate a link between the loss of catalytic function of WND and the Wilson disease phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aim: The toxic milk (tx) mouse is a non-fatal animal model for the metabolic liver disorder, Wilson's disease. The tx mouse has a mutated gene for a copper-transporting protein, causing early copper accumulation in the liver and late accumulation in other tissues. The present study investigated the efficacy of liver cell transplantation (LCT) to correct the tx mouse phenotype.

Methods: Congenic hepatocytes were isolated and intrasplenically transplanted into 3–4-month-old tx mice, which were then placed on various copper-loaded diets to examine its influence on repopulation by transplanted cells. The control animals were age-matched untransplanted tx mice. Liver repopulation was determined by comparisons of restriction fragment length polymorphism ratios (DNA and mRNA), and copper levels were measured by atomic absorption spectroscopy.

Results: Repopulation in recipient tx mice was detected in 11 of 25 animals (44%) at 4 months after LCT. Dietary copper loading (whether given before or after LCT, or both) provided no growth advantage for donor cells, with similar repopulation incidences in all copper treatment groups. Overall, liver copper levels were significantly lower in repopulated animals (538 ± 68 µg/g, n = 11) compared to non-repopulated animals (866 ± 62 µg/g, n = 14) and untreated controls (910 ± 103 µg/g, n = 6; P < 0.05). This effect was also seen in the kidney and spleen. Brain copper levels remained unchanged.

Conclusion: Transplanted liver cells can proliferate and correct a non-fatal metabolic liver disease, with some restoration of hepatic copper homeostasis after 4 months leading to reduced copper levels in the liver and extrahepatic tissues, but not in the brain.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several chronic bioassays have been conducted in multiple strains of mice in which various concentrations of arsenate or arsenite were administered in the drinking water without a tumorigenic effect. However, one study (Ng et al., 1999) reported a significant increase in tumor incidence in C57Bl/6J mice exposed to arsenic in their drinking water throughout their lifetime, with no tumors reported in controls. A physiologically based pharmacokinetic model for arsenic in the mouse has previously been developed (Gentry et al., 2004) to investigate potential differences in tissue dosimetry of arsenic species across various strains of mice. Initial results indicated no significant differences in blood, liver, or urine dosimetry in B6C3F1 and C57Bl/6 mice for acute or subchronic exposure. The current work was conducted to compare model-predicted estimates of tissue dosimetry to additional kinetic information from the (C57Bl/6 x CBA)F1 and TgAc mouse. The results from the current modeling indicate that the pharmacokinetic parameters derived based on information in the B6C3F1 mouse adequately describe the measured concentrations in the blood/plasma, liver, and urine of both the (C57Bl/6 x CBA)F1 and TgAc mouse, providing further support that the differences in response observed in the chronic bioassays are not related to strain-specific differences in pharmacokinetics. One significant finding was that no increases in skin or lung concentrations of arsenic species in the (C57Bl/6 x CBA)F1 strain were observed following administration of low concentrations (0.2 or 2 mg/L) of arsenate in the drinking water, even though differences in response in the skin were reported. These data suggest that pharmacodynamic changes may be observed following exposure to arsenic compounds without an observable change in tissue dosimetry. These results provided further indirect support for the existence of inducible arsenic efflux in these tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.