215 resultados para Motor ability in children

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Although there are a number of plausible accounts to explain movement clumsiness in children [or developmental coordination disorder (DCD)], the cause(s) of the disorder remain(s) an issue of debate. One aspect of motor control that is particularly important to the fluid expression of skill is rapid online control (ROC). Data on DCD have been conflicting. While some recent work using double-step reaching suggests no difficulty in online control, others suggest deficits (e.g. based on sequential pointing). To help resolve this debate, we suggest two things: use of recent neuro-computational models as a framework for investigating motor control in DCD, and more rigorous investigation of double-step reaching. Our working assumption here is that ROC is only viable through the seamless integration of predictive (or forward) models of movement and feedback-based mechanisms.

Aim
The aim of this chronometric study was to explore ROC in children with DCD using a double-step reaching paradigm. We predicted slower online adjustments in DCD based on the argument that these children manifest a core difficulty in predictive control.

Methods
Participants were a group of 17 children with DCD and 27 typically developing children aged between 7 and 12 years. Visual targets were presented on a 17-inch LCD touch screen, inclined to an angle of 15° from horizontal. The children were instructed to press each target as it appeared as quickly and accurately as possible. For 80% of the trials, the central target location remained unchanged for the duration of the movement (non-jump trials), while for the remaining 20% of trials, the target jumped at movement onset to one of the two peripheral locations (jump trials). Reaction time (RT), movement time (MT) and reaching errors were recorded.

Results
For both groups, RT did not vary according to trial condition, while children with DCD were slower to initiate movement. Further, the MT of children with DCD was prolonged to a far greater extent on jump trials relative to controls, with a large effect size. As well, children with DCD committed significantly more errors, notably a reduced ability to inhibit central responses on jump trials.

Conclusion
Our findings help reconcile some disparate findings in the literature using similar tasks. The pattern of performance in children with DCD suggests impairment in the ability to make rapid online adjustments that are based on a predictive (or internal) model of the action. These results pave the way for future kinematic investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motor competence in childhood is an important determinant of physical activity and physical fitness in later life. However, childhood competence levels in many countries are lower than desired. Due to the many different motor skill instruments in use, children's motor competence across countries is rarely compared. The purpose of this study was to evaluate the motor competence of children from Australia and Belgium using the Körperkoordinationstest für Kinder (KTK). The sample consisted of 244 (43.4% boys) Belgian children and 252 (50.0% boys) Australian children, aged 6-8 years. A MANCOVA for the motor scores showed a significant country effect. Belgian children scored higher on jumping sideways, moving sideways and hopping for height but not for balancing backwards. Moreover, a Chi squared test revealed significant differences between the Belgian and Australian score distribution with 21.3% Belgian and 39.3% Australian children scoring "below average." The very low levels reported by Australian children may be the result of cultural differences in physical activity contexts such as physical education and active transport. When compared to normed scores, both samples scored significantly worse than children 40 years ago. The decline in children's motor competence is a global issue, largely influenced by increasing sedentary behavior and a decline in physical activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Gross motor competence confers health benefits, but levels in children and adolescents are low. While interventions can improve gross motor competence, it remains unclear which correlates should be targeted to ensure interventions are most effective, and for whom targeted and tailored interventions should be developed.

OBJECTIVE: The aim of this systematic review was to identify the potential correlates of gross motor competence in typically developing children and adolescents (aged 3-18 years) using an ecological approach.

METHODS: Motor competence was defined as gross motor skill competency, encompassing fundamental movement skills and motor coordination, but excluding motor fitness. Studies needed to assess a summary score of at least one aspect of motor competence (i.e., object control, locomotor, stability, or motor coordination). A structured electronic literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Six electronic databases (CINAHL Complete, ERIC, MEDLINE Complete, PsycINFO(®), Scopus and SPORTDiscus with Full Text) were searched from 1994 to 5 August 2014. Meta-analyses were conducted to determine the relationship between potential correlates and motor competency if at least three individual studies investigated the same correlate and also reported standardized regression coefficients.

RESULTS: A total of 59 studies were identified from 22 different countries, published between 1995 and 2014. Studies reflected the full range of age groups. The most examined correlates were biological and demographic factors. Age (increasing) was a correlate of children's motor competence. Weight status (healthy), sex (male) and socioeconomic background (higher) were consistent correlates for certain aspects of motor competence only. Physical activity and sport participation constituted the majority of investigations in the behavioral attributes and skills category. Whilst we found physical activity to be a positive correlate of skill composite and motor coordination, we also found indeterminate evidence for physical activity being a correlate of object control or locomotor skill competence. Few studies investigated cognitive, emotional and psychological factors, cultural and social factors or physical environment factors as correlates of motor competence.

CONCLUSION: This systematic review is the first that has investigated correlates of gross motor competence in children and adolescents. A strength is that we categorized correlates according to the specific ways motor competence has been defined and operationalized (object control, motor coordination, etc.), which enables us to have an understanding of what correlates assist what types of motor competence. Indeed our findings do suggest that evidence for some correlates differs according to how motor competence is operationalized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: There is no medical test for autism spectrum disorder (ASD), a heterogeneous condition currently defined in the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5) by dysfunction in social, communication, and behavioural dimensions. There is agreement in the literature that the motor profile of ASD may hold the key to improving clinical and diagnostic definition, with DSM-5 now referring to motor deficits, including “odd gait” (p. 55), as part of the ASD clinical description. This review describes the history of motor impairment in ASD, types of motor problems, and age-related motor findings and highlights evidence gaps and future research. Method: A narrative review is provided of the research literature describing motor impairment in ASD and its ability to differentiate between ASD versus non-ASD cohorts. Results: Findings show differences in motor development in children with ASD from infancy onwards, including difficulties across motor coordination, arm movements, gait, and postural stability. Motor disturbance may appear in young children with ASD prior to social and language difficulties becoming clinically apparent. However, challenges remain in defining and measuring the early motor profile that is specific to ASD. Despite well-established motor impairments in ASD, there is a lack of evidence regarding which motor-based interventions will be effective in this group. Conclusions: Motor impairment holds promise as an early diagnostic sign, a behavioural marker, and a means by which to improve identification and possibly phenotypic delineation in ASD. Further research is required to determine whether motor abnormalities can sensitively differentiate ASD from other developmental conditions and to establish evidenced-based interventions to reduce the associated impairment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Objective: This study investigated the relationship between motor performance and social-communicative impairment in children with ADHD-combined type (ADHD-CT). Method: An upper limb Fitts’ aiming task was used as a measure of motor performance and the Social Responsiveness Scale as a measure of social-communicative/autistic impairment in the following groups: ADHD-CT (n = 11) and typically developing (TD) controls (n = 10). Results: Children with ADHD-CT displayed greater variability in their movements, reflected in increased error variance over repeated aiming trials compared with TD controls. Motor performance variability was associated with social-communicative deficits in the ADHD-CT but not in the TD group. Conclusion: Social-communicative impairments further complicate the clinical picture of ADHD-CT; therefore, further research in this area is warranted to ascertain whether a particular pattern of motor disturbance in children with ADHD-CT may be clinically useful in identifying and assessing children with a more complex ADHD presentation. © 2012 SAGE Publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prehension is a fundamental skill usually performed as part of a complex action sequence in everyday tasks. Using an information processing framework, these studies examined the effects of task complexity, defined by the number of component movement elements (MEs), on performance of prehension tasks. Of interest was how motor control and organisation might be influenced by age and/or motor competence. Three studies and two longitudinal case studies examined kinematic characteristics of prehension tasks involving one-, two- and three-MEs: reach and grasp (low-complexity); reach, grasp and object placement (moderate-complexity); and reach, grasp and double placement of object (high-complexity). A pilot study established the suitability of tasks and procedures for children aged 5-, 8- and 11-years and showed that responses to task complexity and object size manipulations were sensitive to developmental changes, with increasing age associated with faster movements. Study 2 explored complexity and age effects further for children aged 6- and 11-years and adults. Increasing age was associated with shorter and less variable movement times (MTs) and proportional deceleration phases (%DTs) across all MEs. Task complexity had no effect on simple reaction time (SRT), suggesting that there may be little preprogramming of movements beyond the first ME. In addition, MT was longer and more on-line corrections were evident for the high- compared to the moderate-complexity task for ME1. Task complexity had a greater influence on movements in ME2 and ME3 than ME1. Adults, but not children, showed task specific adaptations in ME2. Study 3 examined performance of children with different levels of motor competence aged between 5- and 10-years. Increasing age was associated with shorter SRTs, and MTs for ME1 only. A decrease in motor competence was associated with greater difficulty in planning and controlling movements as indicated by longer SRTs, higher %DTs and more on-line corrections, especially in ME2. Task complexity affected movements in all MEs, with a greater influence on ME1 compared to Study 2. Findings also indicated that performance in MEs following prehension may be especially sensitive to motor competence effects on movement characteristics. Case studies for two children at risk of Developmental Coordination Disorder (DCD) revealed two different patterns of performance change over a 16-17 month period, highlighting the heterogeneous nature of DCD. Overall, findings highlighted age-related differences, and the role of motor competence, in the ability to adapt movements to task specific requirements. Results are useful in guiding movement education programmes for children with both age-appropriate and lower levels of motor competence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective
The aim of the study was to investigate motor performance in children with ADHD using a size-scaling handwriting task.

Method
In all, 14 male children with ADHD and 14 typically developing (TD) children (age 7-15) wrote 10-mm and 40-mm cursive letter “l.

Results
Children with ADHD were unable to maintain their writing accurately at 40 mm, falling short by several millimeters; this was not evident in the TD children. Children with ADHD also had slightly faster and more fluent writing than TD children.

Conclusion
It was concluded that children with ADHD have difficulties scaling handwriting movement in the larger 40-mm condition that may reflect poor planning and modulation of movement, despite having faster and more fluent movements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the influence of inhibitory load on online motor control in children. A sample of 129 school children was tested: younger, mid-age, and older children. Online control was assessed using a double-step perturbation paradigm across three trail types: non-jump, jump, and anti-jump. Results show that mid-aged children were able to implement online adjustments to jump trials as quickly as older children, but their performance on anti-jump trials regressed toward younger children. This suggests that rapid unfolding of executive systems during middle childhood may constrain the flexibility with which online control can be implemented, particularly when inhibitory demands are imposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence indicates that the ability to correct reaching movements in response to unexpected target changes (i.e., online control) is reduced in children with developmental coordination disorder (DCD). Recent computational modeling of human reaching suggests that these inefficiencies may result from difficulties generating and/or monitoring internal representations of movement. This study was the first to test this putative relationship empirically. We did so by investigating the degree to which the capacity to correct reaching mid-flight could be predicted by motor imagery (MI) proficiency in a sample of children with probable DCD (pDCD). Thirty-four children aged 8 to 12 years (17 children with pDCD and 17 age-matched controls) completed the hand rotation task, a well-validated measure of MI, and a double-step reaching task (DSRT), a protocol commonly adopted to infer one's capacity for correcting reaching online. As per previous research, children with pDCD demonstrated inefficiencies in their ability to generate internal action representations and correct their reaching online, demonstrated by inefficient hand rotation performance and slower correction to the reach trajectory following unexpected target perturbation during the DSRT compared to age-matched controls. Critically, hierarchical moderating regression demonstrated that even after general reaching ability was controlled for, MI efficiency was a significant predictor of reaching correction efficiency, a relationship that was constant across groups. Ours is the first study to provide direct pilot evidence in support of the view that a decreased capacity for online control of reaching typical of DCD may be associated with inefficiencies generating and/or using internal representations of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies show that children with developmental coordination disorder (DCD) have difficulties in generating an accurate visuospatial representation of an intended action, which are shown by deficits in motor imagery. This study sought to test this hypothesis further using a mental rotation paradigm. It was predicted that children with DCD would not conform to the typical pattern of responding when required to imagine movement of their limbs. Participants included 16 children with DCD and 18 control children; mean age for the DCD group was 10 years 4 months, and for controls 10 years. The task required children to judge the handedness of single-hand images that were presented at angles between 0° and 180° at 45° intervals in either direction. Results were broadly consistent with the hypothesis above. Responses of the control children conformed to the typical pattern of mental rotation: a moderate trade-off between response time and angle of rotation. The response pattern for the DCD group was less typical, with a small trade-off function. Response accuracy did not differ between groups. It was suggested that children with DCD, unlike controls, do not automatically enlist motor imagery when performing mental rotation, but rely on an alternative object-based strategy that preserves speed and accuracy. This occurs because these children manifest a reduced ability to make imagined transformations from an egocentric or first-person perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the fact that developmental coordination disorder (DCD) is characterised by a deficit in the ability to learn or automate motor skills, few studies have examined motor learning over repeated trials. In this study we examined procedural learning in a group of 10 children with DCD (aged 8–12 years) and age-matched controls without DCD. The learning task was modelled on that of Nissen and Bullemer [Cognitive Psychology 19 (1987) 1]. Children performed a serial reaction time (SRT) task in which they were required to learn a spatial sequence that repeated itself every 10 trials. Children were not aware of the repetition. Spatial targets were four (horizontal) locations presented on a computer monitor. Children responded using four response keys with the same horizontal mapping as the stimulus. They were tested over five blocks of 100 trials each. The first four blocks presented the same repeating sequence, while the fifth block was randomised. Procedural learning was indexed by the slope of the regression of RT on blocks 1–4. Results showed that most children displayed strong procedural learning of the sequence, despite having no explicit knowledge about it. Overall, there was no group difference in the magnitude of learning over blocks of trials – most children performed within the normal range. Procedural learning for simple sequential movements appears to be intact in children with DCD. This suggests that cortico-striatal circuits that are strongly implicated in the sequencing of simple movements appear to be function normally in DCD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aimed to clarify whether a reduced ability to correct movements in-flight observed in children with developmental coordination disorder (DCD) reflects a developmental immaturity or deviance from the typical trajectory. Eighteen children with DCD (8–12 years), 18 age-matched controls, and 12 younger controls (5–7 years) completed a double-step reaching task. Compared to older controls, children with DCD and younger controls showed similarly prolonged reaching when the target unexpectedly shifted at movement onset and were equally slow to correct their reaching trajectory. These results suggest that impaired online control in DCD reflects developmental immaturity, possibly implicating the parietal-cerebellar cortices.