41 resultados para Motifs

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein–protein interactions are often mediated by the recognition of short continuous amino acid stretches on target proteins by specific binding domains. Affinity-based selection strategies have successfully been used to define recognition motifs for a large series of such protein domains. However, in many biological systems specificity of interaction may be of equal or greater importance than affinity. To address this issue we have developed a peptide library screening technology that can be used to directly define ligands for protein domains based on both affinity and specificity of interaction. We demonstrate the value of this approach by the selection of peptide ligands that are either highly specific for the Grb2 Src homology 2 (SH2) domain or that are cross-reactive between a group of related SH2 domains. Examination of previously identified physiological ligands for the Grb2 SH2 domain suggests that for these ligands regulation of the specificity of interaction may be an important factor for in vivo ligand selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the emergence of non-coding miRNA has attracted biology and computer researchers. miRNA plays an important role in regulation of genes. Finding motifs in RNA is one of important topics. In our work, we attempt to find motifs in mature miRNA from combinations ranging from two to ten nucleotides. Interestingly, we have found several motifs only appear in mature miRNA but not appear in other regions of primary miRNA sequences taken from latest miRNA datasets. The findings of our investigation may help in the building model to predict all possible miRNAs in genomes

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the intracellular distribution and internalization kinetics of the granulocyte colony-stimulating factor receptor (G-CSF-R) in living cells using fusion constructs of wild-type or mutant G-CSF-R and enhanced green fluorescent protein (EGFP). Under steady-state conditions the G-CSF-R localized predominantly to the Golgi apparatus, late endosomes, and lysosomes, with only low expression on the plasma membrane, resulting from spontaneous internalization. Internalization of the G-CSF-R was significantly accelerated by addition of G-CSF. This ligand-induced switch from slow to rapid internalization required the presence of G-CSF-R residue Trp650, previously shown to be essential for its signaling ability. Both spontaneous and ligand-induced internalization depended on 2 distinct amino acid stretches in the G-CSF-R COOH-terminus: 749-755, containing a dileucine internalization motif, and 756-769. Mutation of Ser749 at position –4 of the dileucine motif to Ala significantly reduced the rate of ligand-induced internalization. In contrast, mutation of Ser749 did not affect spontaneous G-CSF-R internalization, suggesting the involvement of a serine-threonine kinase specifically in ligand-accelerated internalization of the G-CSF-R. COOH-terminal truncation mutants of G-CSF-R, found in severe congenital neutropenia, lack the internalization motifs and were completely defective in both spontaneous and ligand-induced internalization. As a result, these mutants showed constitutively high cell-surface expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukins 2 and 15 (IL-2 and IL-15) are highly differentiated but related cytokines with overlapping, yet also distinct functions, and established benefits for medical drug use. The present study identified a gene for an ancient third IL-2/15 family member in reptiles and mammals, interleukin 15-like (IL-15L), which hitherto was only reported in fish. IL-15L genes with intact open reading frames (ORFs) and evidence of transcription, and a recent past of purifying selection, were found for cattle, horse, sheep, pig and rabbit. In human and mouse the IL-15L ORF is incapacitated. Although deduced IL-15L proteins share only ~21 % overall amino acid identity with IL-15, they share many of the IL-15 residues important for binding to receptor chain IL-15Rα, and recombinant bovine IL-15L was shown to interact with IL-15Rα indeed. Comparison of sequence motifs indicates that capacity for binding IL-15Rα is an ancestral characteristic of the IL-2/15/15L family, in accordance with a recent study which showed that in fish both IL-2 and IL-15 can bind IL-15Rα. Evidence reveals that the species lineage leading to mammals started out with three similar cytokines IL-2, IL-15 and IL-15L, and that later in evolution (1) IL-2 and IL-2Rα receptor chain acquired a new and specific binding mode and (2) IL-15L was lost in several but not all groups of mammals. The present study forms an important step forward in understanding this potent family of cytokines, and may help to improve future strategies for their application in veterinarian and human medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metals are essential for the normal functioning of living organisms. Their uses in biological systems are varied, but are frequently associated with sites of critical protein function, such as zinc finger motifs and electron or oxygen carriers. These functions only require essential metals in minute amounts, hence they are termed trace metals. Other metals are, however, less beneficial, owing to their ability to promote a wide variety of eleterious health effects, including cancer. Metals such as arsenic, for example, an produce a variety of diseases ranging from keratosis of the palms and feet to cancers in multiple target organs. The nature and type of metal-induced pathologies appear to be dependent on the concentration, speciation, and length of exposure. Unfortunately, human contact with metals is an inescapable consequence of human life, with exposures occurring from both occupational and environmental sources. A uniform mechanism of action for all harmful metals is unlikely, if not implausible, given the diverse chemical properties of each metal. In this chapter we will review the mechanisms of carcinogenesis of arsenic, cadmium, chromium, and nickel, the four known carcinogenic metals that are best understood. The key areas of speciation, bioavailability, and mechanisms of action are discussed with particular reference to the role of metals in alteration of gene expression and maintenance of genomic integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Excess copper is effluxed from mammalian cells by the Menkes or Wilson P-type ATPases (MNK and WND, respectively). MNK and WND have six metal binding sites (MBSs) containing a CXXC motif within their N-terminal cytoplasmic region. Evidence suggests that copper is delivered to the ATPases by Atox1, one of three cytoplasmic copper chaperones. Attempts to monitor a direct Atox1-MNK interaction and to determine kinetic parameters have not been successful. Here we investigated interactions of Atox1 with wild-type and mutated pairs of the MBSs of MNK using two different methods: yeast two-hybrid analysis and real-time surface plasmon resonance (SPR). A copper-dependent interaction of Atox1 with the MBSs of MNK was observed by both approaches. Cys to Ser mutations of conserved CXXC motifs affected the binding of Atox1 underlining the essentiality of Cys residues for the copper-induced interaction. Although the yeast two-hybrid assay failed to show an interaction of Atox1 with MBS5/6, SPR analysis clearly demonstrated a copper-dependent binding with all six MBSs highlighting the power and sensitivity of SPR as compared with other, more indirect methods like the yeast two-hybrid system. Binding constants for copper-dependent chaperone-MBS interactions were determined to be 10–5-10–6 M for all the MBSs representing relatively low affinity binding events. The interaction of Atox1 with pairs of the MBSs was non-cooperative. Therefore, a functional difference of the MBSs in the MNK N terminus cannot be attributed to cooperativity effects or varying affinities of the copper chaperone Atox1 with the MBSs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recovering the control or implicit geometry underlying temple architecture requires bringing together fragments of evidence from field measurements, relating these to mathematical and geometric descriptions in canonical texts and proposing "best-fit" constructive models. While scholars in the field have traditionally used manual methods, the innovative application of niche computational techniques can help extend the study of artefact geometry. This paper demonstrates the application of a hybrid computational approach to the problem of recovering the surface geometry of early temple superstructures. The approach combines field measurements of temples, close-range architectural photogrammetry, rule-based generation and parametric modelling. The computing of surface geometry comprises a rule-based global model governing the overall form of the superstructure, several local models for individual motifs using photogrammetry and an intermediate geometry model that combines the two. To explain the technique and the different models, the paper examines an illustrative example of surface geometry reconstruction based on studies undertaken on a tenth century stone superstructure from western India. The example demonstrates that a combination of computational methods yields sophisticated models of the constructive geometry underlying temple form and that these digital artefacts can form the basis for in depth comparative analysis of temples, arising out of similar techniques, spread over geography, culture and time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C-type natriuretic peptide (CNP) is a crucial osmoregulatory hormone in elasmobranchs, participating in salt secretion and drinking. In contrast to teleosts and tetrapods in which the NP family is composed of a group of structurally related peptides, we have shown that CNP is the sole NP in sharks. In the present study, CNP cDNAs were cloned from four species of batoids, another group of elasmobranchs. The cloned batoid CNP precursors contained a plausible mature peptide of 22 amino acid residues that is identical to most shark CNP-22s, but five successive amino acids were consistently deleted in the prosegment compared with shark precursors, supporting the diphyletic classification of sharks and rays. In addition, molecular phylogenetic trees of CNP precursors were consistent with a diphyletic interpretation. Except for the deletion, the nucleotide and deduced amino acid sequences of the CNP cDNAs are extremely well-conserved among all elasmobranch species, even between sharks and rays. Surprisingly, high conservation is evident not only for the coding region, but also for the untranslated regions. It is most likely that the high conservation is due to the low nucleotide substitution rate in the elasmobranch genome, and high selection pressure. The 3′-untranslated region of the elasmobranch CNP cDNAs contained three to six repeats of the ATTTA motif that is associated with the regulation of mRNA stability and translation efficiency. Alternative polyadenylation sites were also found; the long 3′-untranslated region contains a core of ATTTA motifs while the short form has only one or no ATTTA motif, indicating that the post-transcriptional modification of mRNA is important for regulation of CNP synthesis. These characteristics in the 3′-untranslated region were conserved among all elasmobranch CNP cDNAs. Since CNP has been implicated as a fast-acting hormone to facilitate salt secretion from the rectal gland, the conserved 3′-untranslated region most likely contributes to rapid regulation of CNP synthesis in elasmobranchs in response to acute changes in internal and external environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we explore the role of the C-terminus (V5 domain) of PKCvar epsilon plays in the catalytic competence of the kinase using serial truncations followed by immune-complex kinase assays. Surprisingly, removal of the last seven amino acid residues at the C-terminus of PKCvar epsilon resulted in a PKCvar epsilon-Δ731 mutant with greatly reduced intrinsic catalytic activity while truncation of eight amino acid residues at the C-terminus resulted in a catalytically inactive PKCvar epsilon mutant. Computer modeling and molecular dynamics simulations showed that the last seven and/or eight amino acid residues of PKCvar epsilon were involved in interactions with residues in the catalytic core. Further truncation analyses revealed that the hydrophobic phosphorylation motif was dispensable for the physical interaction between PKCvar epsilon and 3-phosphoinositide-dependent kinase-1 (PDK-1) as the PKCvar epsilon mutant lacking both the turn and the hydrophobic motifs could still be co-immunoprecipitated with PDK-1. These results provide fresh insights into the biochemical and structural basis underlying the isozyme-specific regulation of PKC and suggest that the very C-termini of PKCs constitute a promising new target for the development of novel isozyme-specific inhibitors of PKC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to improve automated gene prediction in the untranslated region of a gene, we completed an in-depth analysis of the minimum free energy for 8,689 sub-genetic DNA sequences. We expanded Zhang's classification model and classified each sub-genetic sequence into one of 27 possible motifs. We calculated the minimum free energy for each motif to explore statistical features that correlate to biologically relevant sub-genetic sequences. If biologically relevant sub-genetic sequences fall into distinct free energy quanta it may be possible to characterize a motif based on its minimum free energy. Proper characterization of motifs can lead to greater understanding in automated genefinding, gene variability and the role DNA structure plays in gene network regulation.

Our analysis determined: (1) the average free energy value for exons, introns and other biologically relevant sub-genetic sequences, (2) that these subsequences do not exist in distinct energy quanta, (3) that introns exist however in a tightly coupled average minimum free energy quantum compared to all other biologically relevant sub-genetic sequence types, (4) that single exon genes demonstrate a higher stability than exons which span the entire coding sequence as part of a multi-exon gene and (5) that all motif types contain a free energy global minimum at approximately nucleotide position 1,000 before reaching a plateau. These results should be relevant to the biochemist and bioinformatician seeking to understand the relationship between sub-genetic sequences and the information behind them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are no adequate vaccines against some of the new or reemerged infectious scourges such as HIV and TB. They may require strong and enduring cell-mediated immunity to be elicited. This is quite a task, as the only known basis of protection by current commercial vaccines is antibody. As DNA or RNA vaccines may induce both cell-mediated and humoral immunity, great interest has been shown in them. However, doubt remains whether their efficacy will suffice for their clinical realization. We look at the various tactics to increase the potency of nucleic acid vaccines and divided them broadly under those affecting delivery and those affecting immune induction. For delivery, we have considered ways of improving uptake and the use of bacterial, replicon or viral vectors. For immune induction, we considered aspects of immunostimulatory CpG motifs, coinjection of cytokines or costimulators and alterations of the antigen, its cellular localization and its anatomical localization including the use of ligand-targeting to lymphoid tissue. We also thought that mucosal application of DNA deserved a separate section. In this review, we have taken the liberty to discuss these enhancement methods, whenever possible, in the context of the underlying mechanisms that might argue for or against these strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monomeric tellurides 4-RC6H4(SB)Te [SB = 2-(4,4'-N02C6H4CH=NC6H3-Me); R = H, 1a; Me,1b; OMe, 1c], which incidentally represent the first example of a telluride with 1,4-Te···N intramolecular interaction, have been prepared and characterized by solution and solid-state 125Te NMR, 13C NMR and X-ray crystallography. Interplay of weak C-H···O and C-H-··π{ interactions in the crystal lattice of 1b and1c are responsible for the formation of supramolecular motifs. These tellurides undergo expected oxidative addition reactions with halogens and interhalogens and also interact coordinatively with mercury(II) halides to give 1:2 complexes, HgX2[4-RC6H4(SB)Te]2 (X = CI, R = H, 2a; Me, 2b; OMe, 2c and X = Br, R = H, 3a; Me, 3b; and OMe, 3c) with no sign of Te-C bond cleavage, as has been reported for some 1,5-Te·· ·N(O) intramolecularly bonded tellurides. The complexes 2a and 3c are the first structurally characterized monomeric 1:2 adducts of mercury(II) halides with Te ligands. The 1,4-Te···N intramolecular interactions in the solid-state are retained in the complexes highlighting simultaneously the Lewis acid and base character of the Te(lI) atom. Packing of molecules in the crystal lattice of 2a
and 3c reveals that non-covalent C-H· . ·Cl/Br interactions involving metal-bound halogen atoms possess significant directionality and in
combination with coordinative covalent interactions may be of potential use in creating inorganic supramolecular synthons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review article focuses primarily on the work carried in our laboratories over the last few years using luminescent and colorimetric sensors, where the anion recognition occurs through hydrogen bonding in organic or aqueous solvents. This review begins with the story of the discovery of fluorescent photoinduced electron transfer (PET) sensors for anions using charged neutral urea or thiourea receptors where both fluorescent and NMR spectroscopic methods monitored anion recognition. This work led to the development of dual luminescent and colorimetric anion sensors based on the use of the ICT based naphthalimide chromophore, where ions such as fluoride gave rise to changes in both the fluorescence and the absorption spectra of the sensors, but at different concentrations. Here, the former changes were due to hydrogen bonding interactions, whereas the latter was due to the deprotonation of acidic protons, giving rise to the formation of the bifluoride anion (HF2−). Modification of the 4-amino-l,8-naphthalimide moiety has facilitated the formation of colorimetric anion sensors that work both in organic or aqueous solutions. Such charge neutral receptor motifs have also been incorporated into organic scaffolds with norbomyl and calixarene backbones, which have enabled us to produce anion directed self-assembled structures.