58 resultados para Motif RING

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Left ventricular (LV) hypertrophy is a risk factor for cardiovascular death, but the genetic factors determining LV size and predisposition to hypertrophy are not well understood. We have previously linked the quantitative trait locus cardiac mass 22 (Cm22) on chromosome 2 with cardiac hypertrophy independent of blood pressure in the spontaneously hypertensive rat. From an original cross of spontaneously hypertensive rat with F344 rats, we derived a normotensive polygenic model of spontaneous cardiac hypertrophy, the hypertrophic heart rat (HHR) and its control strain, the normal heart rat (NHR).

METHODS AND RESULTS: To identify the genes and molecular mechanisms underlying spontaneous LV hypertrophy we sequenced the HHR genome with special focus on quantitative trait locus Cm22. For correlative analyses of function, we measured global RNA transcripts in LV of neonatal HHR and NHR and 198 neonatal rats of an HHR × NHR F2 crossbred population. Only one gene within locus Cm22 was differentially expressed in the parental generation: tripartite motif-containing 55 (Trim55), with mRNA downregulation in HHR (P < 0.05) and reduced protein expression. Trim55 mRNA levels were negatively correlated with LV mass in the F2 cross (r = -0.16, P = 0.025). In exon nine of Trim55 in HHR, we found one missense mutation that functionally alters protein structure. This mutation was strongly associated with Trim55 mRNA expression in F2 rats (F = 10.35, P < 0.0001). Similarly, in humans, we found reduced Trim55 expression in hearts of subjects with idiopathic dilated cardiomyopathy.

CONCLUSION: Our study suggests that the Trim55 gene, located in Cm22, is a novel candidate gene for polygenic LV hypertrophy independent of blood pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B3LYP/6-311+G(d) calculations indicate that (HBO)3 (4) and (HBO)4 (5) possess (zero-point energy corrected) strain enthalpies of 11.4 and 31.6 kJ mol−1, respectively. The absence of eight-membered (RBO)4 rings is attributed to a combination of ring strain and the lability of the B---O bond. The synthesis, characterization and molecular structure of (PhBO)3·pyridine (1) are described and chemical phenomena related to the addition of amines to triorganoboroxine rings are rationalized in terms of relief of ring strain in 4.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spinning geometry of a ring frame plays an important role, and the twist triangle is the critical region in ring spinning. Changes in the spinning geometry may affect yarn properties. This paper examines the idea of ring spinning with a "diagonal" yarn path, and the effect of such a path on yam properties, particularly hairiness. Both "left diagonal" and "right diagonal" yam arrangements are tried on a 24-spindle Cognetex FLC worsted ring frame. The hairiness results obtained from the Zweigle hairiness meter show that the right diagonal yam path produces yams of lower hairiness than the conventional ring spun yarn in almost all the hair length groups. Yam evenness and tenacity are not as sensitive to the change in yarn path. The mean spindle speed at break is also tested, and there is some deterioration in spinning efficiency with the right diagonal yarn path, particularly at higher spinning speeds. Results from this study may help explain variations in yarns spun on poorly aligned ring frames.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the hairiness of Solospun yarns with conventional ring spun worsted yams of the same specifications. A 24-spindles worsted ring spinning frame is used to spin the Solospun and conventional ring spun yarns at the same time, and yarn hairiness is measured. The total hairiness number (Tp), the number of hairs longer than or equal to 3mm (S3), the percentage of longer hairs in total hairs (100S3/Tp), and the total hair length per unit yarn length (K' ) are used to compare the hairiness of these yams. The results indicate that the Solospun yarn exhibits less hairiness in each of the hair length groups and has lower variations in yarn hairiness. The hair-length distribution of the Solospun yarn follows an exponential law just like conventional ring spun yams. There is a statistically significant difference between the Solospun and conventional ring spun yams for T p, S3, and K', but the difference in 1 00S 3/Tp is not statistically significant for these yams. In addition, the Tp, S3, and K' values of the Solospun yarn decrease with twist increase and increase with spindle speed increase, but the 100S3/Tp values of the Solospun and conventional ring spun yarns in this study behave differently in that they are affected by twist level and spindle speed.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of yarn hairiness on energy consumption when rotating a ring-spun yarn package is investigated theoretically and experimentally. A theoretical model is developed to calculate the energy required to rotate hair fibers, based on hair length and number as well as package speed and size. A single spindle test rig is used to verify the theoretical prediction. The experimental results confirm the theoretical prediction that the package power increases with increased yarn hairiness level and spindle speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ring spinning has been and will continue to be an important system for making staple yarns from different fibers in the textile industry. But high power consumption and low productivity remain the two outstanding problems with ring spinning. Based on an analysis of power distribution during yarn winding in ring spinning, models for the ratio of energy consumption to yarn production over a full yarn package are established. Spindle speed, yarn count, and package diameter are the three key parameters affecting this ratio. The effects on energy consumption of these parameters are discussed through a case study. The energy-to-production ratio increases with increased package diameter but decreases with increased spindle speed and/or yarn count (tex). The results will help guide spinners in minimizing energy consumption in ring spinning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of a yam package is established for a ring spinning system. The yarn layer, surface area, and mass of the yam package are formulated with respect to the diameters of the empty bobbin and full yarn package, yarn count, and yarn winding-on time. Based on the principles of dynamics and aerodynamics, models of the power requirements for overcoming the skin friction drag, increasing the kinetic energy of the yarn package (bobbin and wound yarn), and overcoming the yarn wind-on tension are developed. The skin friction coefficient on the surface of a rotating yam package is obtained from experiment. The power distribution during yam packaging is discussed based on a case study. The results indicate that overcoming the skin friction drag during yarn winding consumes the largest amount of energy. The energy required to overcome the yarn wind-on tension is also significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skin friction coefficient on the surface of a rotating yarn package affects the power required to drive the package. This paper examines the relationship between the skin friction coefficient on the package surface and its diameter and rotating speed, based on the fundamentals of aerodynamics and the experimental results of power consumption. Skin friction coefficients on the surfaces of an airplane, car top, and yarn package are discussed. The results indicate that the skin friction coefficient on the package surface without hairiness depends on the package diameter and spindle speed only. The skin friction coefficient on the yarn package surface is about three times that on the top surface of a car, and is about twenty times that on an airplane surface. The power consumed to overcome skin friction drag is more than that consumed to drive the spindle if the spindle speed is very slow. However, the situation reverses when the spindle speed is fast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1,3,5-tris(diorganohydroxysilyl)benzenes 1,3,5-(HOR2Si)3C6H3 (TMSB, R = Me; TPSB, R = Ph) have been prepared and fully characterized by X-ray crystallography. The crystal structure of TMSB features pairwise connected layers, in which the molecules are involved in interlayer hydrogen bonding. The supramolecular hydrogen bond motif may be described as a 12-membered ring that adopts a chair conformation. TPSB forms an equimolar inclusion complex with water, which is associated via hydrogen bonding and apparently fills a void in the crystal packing. In this case, the supramolecular hydrogen bond motif may be described as an eight-membered ring. Two of the water molecules are also associated, giving rise to a water dimer entrapped in the silanol matrix. Besides the hydrogen bonds, the crystal structure of the TPSB·H2O complex reveals intra- and intermolecular C-H··· π stacking of most of the phenyl groups. Electrospray mass spectrometry shows that TPSB undergoes supramolecular complex formation with a variety of N-donors such as 4-(dimethylamino)pyridine, N,N,N',N'-tetramethylethylenediamine, imidazole, 2-(dimethylamino)pyridine, and 2,2'-dipyridylamine.

Download the full text: PDF | HTML

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yarn tension is a key factor that affects the efficiency of a ring spinning system. In this paper, a specially constructed rig, which can rotate a yarn at a high speed without inserting any real twist into the yarn, was used to simulate a ring spinning process. Yarn tension was measured at the guide-eye during the simulated spinning of different yarns at various balloon heights and with varying yarn length in the balloon. The effect of balloon shape, yarn hairiness and thickness, and yarn rotating speed, on the measured yarn tension, was examined. The results indicate that the collapse of balloon shape from single loop to double loop, or from double loop to triple etc, lead to sudden reduction in yarn tension. Under otherwise identical conditions, a longer length of yarn in the balloon gives a lower yarn tension at the guide-eye. In addition, thicker yarns and/or more hairy yarns generate a higher tension in the yarn, due to the increased air drag acting on the thicker or more hairy yarns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports theoretical and experimental investigation on yarn snarling and balloon fluttering in ring spinning. Yarn snarling and balloon fluttering affect yarn breakage in ring spinning. The theoretical model has incorporated the tangential component of air drag on a ballooning yarn, which was ignored in previous models. The results show that yarn snarling happens in the balloon when the ratio of yarn length in the balloon to balloon height is greater than a specific value that depends on the yarn type and count. Yarn tension experiences an obvious change before and after yarn snarling. The balloon flutter appears between normal balloons while the balloon loops are changing. Fluttering balloon shapes that oscillate periodically between two and three loop configurations as yarn tension varies periodically have also been observed experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air drag on yarn and package surfaces affects yarn tension, which in turn affects energy consumption and ends-down in ring spinning. This study investigated the effects of yarn hairiness on air drag in ring spinning. Theoretical models of skin friction coefficient on the surface of rotating yarn packages were developed. The predicted results were verified with experimental data obtained from cotton and wool yarns. The results show that hairiness increases the air drag by about one-quarter and one-third for the rotating cotton and wool yarn packages, respectively. In addition, yarn hairiness increases the air drag by about one-tenth on a ballooning cotton yarn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ring spinning is the most important system of making high quality yarns in the textile industry. Yarn tension affects yarn breakage, which in turn affects yarn productivity in ring spinning. Accurate information about how various spinning parameters affect yarn tension is essential for the optimisation of the ring spinning process. In this paper, a program to simulate the ring spinning process was developed using MATLAB, which can predict yarn tension under given spinning conditions. The simulation results were verified with experimental results obtained from ring spinning cotton and wool yarns.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple model was developed for the approximation of ring strain energies of homo- and heterometallic, six- and eight-membered cyclic organometallic group 14 oxides and the degree of puckering of their ring conformations. The conformational energy of a ring is modelled as the sum of its angular strain components. The bending potential energy functions for the various endocyclic M–O–M′ and O–M–O linkages (M, M′=Si, Ge, Sn) were calculated at the B3LYP/(v)TZ level of theory using H3MOM′H3 and H2M(OH)2 as model compounds. For the six-membered rings, the minimum total angular contribution to ring strain, ERSGmin was calculated to decrease in the order: cyclo-(H2SiO)3 (13.0 kJ mol−1)>cyclo-H2Sn(OSiH2)2O (7.0 kJ mol−1)>cyclo-H2Ge(OSiH2)2O (4.9 kJ mol−1)>cyclo-H2Si(OSnH2)2O (3.4 kJ mol−1)>cyclo-(H2SnO)3 (1.7 kJ mol−1)>cyclo-H2Si(OGeH2)2O (0.8 kJ mol−1)≈cyclo-H2Ge(OSnH2)2O (0.7 kJ mol−1)>cyclo-H2Sn(OGeH2)2O (0.1 kJ mol−1)≈cyclo-(H2GeO)3 (0 kJ mol−1). All of the six-membered rings were predicted to adopt (nearly) planar conformations (a=0.996<a<1). By contrast, all eight-membered rings were predicted to adopt strainless, but puckered conformations. The degree of puckering was predicted to increase in the order: cyclo-(H2SiO)4 (a=0.983)<cyclo-H2Sn(OSiH2O)2SiH2 (a=0.959)<cyclo-(H2SiO)2(H2SnO)2 (a=0.942)< cyclo-H2Si(OSnH2O)2SiH2 (a=0.935)<cyclo-(H2SnO)4 (a=0.916)<cyclo-(H2GeO)4 (a=0.885). The differences in ring strain and the degree of puckering were linked to the different electronegativities of Si, Ge and Sn. The results obtained are consistent with experimental ring strain energies; reactivities towards ring opening polymerizations or ring expansion reactions and observed ring conformations of cyclic organometallic group 14 oxides.