15 resultados para Monocarboxylate transporter 2

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIM/HYPOTHESIS: Skeletal muscle insulin resistance and oxidative stress are characteristic metabolic disturbances in people with type 2 diabetes. Studies in insulin resistant rodents show an improvement in skeletal muscle insulin sensitivity and oxidative stress following antioxidant supplementation. We therefore investigated the potential ameliorative effects of antioxidant ascorbic acid (AA) supplementation on skeletal muscle insulin sensitivity and oxidative stress in people with type 2 diabetes. METHODS: Participants with stable glucose control commenced a randomized cross-over study involving four months of AA (2×500mg/day) or placebo supplementation. Insulin sensitivity was assessed using a hyperinsulinaemic, euglycaemic clamp coupled with infusion of 6,6-D2 glucose. Muscle biopsies were measured for AA concentration and oxidative stress markers that included basal measures (2',7'-dichlorofluorescin [DCFH] oxidation, ratio of reduced-to-oxidized glutathione [GSH/GSSG] and F2-Isoprostanes) and insulin-stimulated measures (DCFH oxidation). Antioxidant concentrations, citrate synthase activity and protein abundances of sodium-dependent vitamin C transporter 2 (SVCT2), total Akt and phosphorylated Akt (ser473) were also measured in muscle samples. RESULTS: AA supplementation significantly increased insulin-mediated glucose disposal (delta rate of glucose disappearance; ∆Rd) (p=0.009), peripheral insulin-sensitivity index (p=0.046), skeletal muscle AA concentration (p=0.017) and muscle SVCT2 protein expression (p=0.008); but significantly decreased skeletal muscle DCFH oxidation during hyperinsulinaemia (p=0.007) when compared with placebo. Total superoxide dismutase activity was also lower following AA supplementation when compared with placebo (p=0.006). Basal oxidative stress markers, citrate synthase activity, endogenous glucose production, HbA1C and muscle Akt expression were not significantly altered by AA supplementation. CONCLUSIONS/INTERPRETATION: In summary, oral AA supplementation ameliorates skeletal muscle oxidative stress during hyperinsulinaemia and improves insulin-mediated glucose disposal in people with type 2 diabetes. Findings implicate AA supplementation as a potentially inexpensive, convenient, and effective adjunct therapy in the treatment of insulin resistance in people with type 2 diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Type 2 diabetes is characterized by islet dysfunction resulting in hyperglycemia, which can then lead to further deterioration in islet function. A possible mechanism for hyperglycemia-induced islet dysfunction is the accumulation of advanced glycation end products (AGE). The DBA/2 mouse develops pancreatic islet dysfunction when exposed to a high glucose environment and/or obesity-induced insulin resistance. To determine the biochemical cause of dysfunction, DBA/2 and C57BL/6 control islets were incubated in 11.1 mM or 40 mM glucose in the absence or presence of the AGE inhibitor aminoguanidine (AG) for 10 days. Basal (2.8 mM glucose) insulin release was increased in both DBA/2 and C57BL/6 islets incubated with 40 mM vs 11.1 mM glucose for 10 days. Chronic exposure to hyperglycemia decreased glucose (20 mM)-stimulated insulin secretion in DBA/2 but not in C57BL/6 islets. AG significantly increased fold-induced insulin release in high glucose cultured DBA/2 mouse islets, but did not affect C57BL/6 islet function. DBA/2 islet glucokinase was significantly reduced following 40 mM glucose culture, compared with 11.1 mM glucose cultured DBA/2 islets and 40 mM glucose cultured C57BL/6 islets. Incubation of islets with AG resulted in a normalization of DBA/2 islet glucokinase levels. In conclusion, chronic high glucose-induced increases in AGE can result in islet dysfunction and this is associated with reduced glucokinase levels in a mouse model with susceptibility to islet failure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disorder, involving psychiatric, cognitive and motor symptoms, caused by a CAG-repeat expansion encoding an extended polyglutamine tract in the huntingtin protein. Oxidative stress and excitotoxicity have previously been implicated in the pathogenesis of HD. We hypothesized that N-acetylcysteine (NAC) may reduce both excitotoxicity and oxidative stress through its actions on glutamate reuptake and antioxidant capacity. The R6/1 transgenic mouse model of HD was used to investigate the effects of NAC on HD pathology. It was found that chronic NAC administration delayed the onset and progression of motor deficits in R6/1 mice, while having an antidepressant-like effect on both R6/1 and wild-type mice. A deficit in the astrocytic glutamate transporter protein, GLT-1, was found in R6/1 mice. However, this deficit was not ameliorated by NAC, implying that the therapeutic effect of NAC is not due to rescue of the GLT-1 deficit and associated glutamate-induced excitotoxicity. Assessment of mitochondrial function in the striatum and cortex revealed that R6/1 mice show reduced mitochondrial respiratory capacity specific to the striatum. This deficit was rescued by chronic treatment with NAC. There was a selective increase in markers of oxidative damage in mitochondria, which was rescued by NAC. In conclusion, NAC is able to delay the onset of motor deficits in the R6/1 model of Huntington's disease and it may do so by ameliorating mitochondrial dysfunction. Thus, NAC shows promise as a potential therapeutic agent in HD. Furthermore, our data suggest that NAC may also have broader antidepressant efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc is an essential trace element required by all living organisms. An adequate supply of zinc is particularly important in the neonatal period. Zinc is a significant component of breast milk, which is transported across the maternal epithelia during lactation. The mechanisms by which zinc becomes a constituent of breast milk have not been elucidated. The function of the zinc transporter ZnT4 in the transport of zinc into milk during lactation was previously demonstrated by studies of a mouse mutant, the ‘lethal milk’ mouse, where a mutation in the ZnT4 gene decreased the transport of zinc into milk. In the present study, we have investigated the expression of the human orthologue of ZnT4 (hZnT4) in the human breast. We detected hZnT4 mRNA expression in the tissue from the resting and lactating human breast, using reverse-transcriptase PCR. Western-blot analysis using antibodies to peptide sequences of hZnT4 detected a major band of the predicted size of 47 kDa and a minor band of 77 kDa, in extracts from the resting and lactating breast tissues. There was no difference in the hZnT4 expression levels between lactating and resting breasts. The hZnT4 protein was present in the luminal cells of the ducts and alveoli where it had a granular distribution. A cultured human breast epithelial cell line PMC42 was used to investigate the subcellular distribution of hZnT4 and this showed a granular label throughout the cytoplasm, consistent with a vesicular localization. The presence of zinc-containing intracellular vesicles was demonstrated by using the zinc-specific fluorphore Zinquin (ethyl-[2-methyl-8-p-toluenesulphonamido-6-quinolyloxy]acetate). Double labelling indicated that there was no obvious overlap between Zinquin and the hZnT4 protein, suggesting that hZnT4 was not directly involved in the transport of zinc into vesicles. We detected expression of two other members of the hZnT family, hZnT1 and hZnT3, in human breast epithelial cells. We conclude that hZnT4 is constitutively expressed in the human breast and may be one of the several members of the ZnT family involved in the transport of zinc into milk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc deficiency, causing impaired growth and development, may have a nutritional or genetic basis. We investigated two cases of inherited zinc deficiency found in breast-fed neonates, caused by low levels of zinc in the maternal milk. This condition is different from acrodermatitis enteropathica but has similarities to the "lethal milk" mouse, where low levels of zinc in the milk of lactating dams leads to zinc deficiency in pups. The mouse disorder has been attributed to a defect in the ZnT4 gene. Little is known about the expression of the human orthologue, hZnT4 (Slc30A4). Sequence analysis of cDNA, real-time PCR and Western blot analysis of hZnT4, carried out on control cells and cells from unrelated mothers of two infants with zinc deficiency, showed no differences. The hZnT4 gene was highly expressed in mouthwash buccal cells compared with lymphoblasts and fibroblasts. The hZnT4 protein did not co-localise with intracellular free zinc pools, suggesting that hZnT4 is not involved in transport of zinc into vesicles destined for secretion into milk. This observation, combined with phenotypic differences between the "lethal milk" mouse and the human disorder, suggests that the "lethal milk" mouse is not the corresponding model for the human zinc deficiency condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated whether there were any differences between males and females in respect to creatine transporter (CreaT) gene expression and/or total creatine (TCr) content in human vastus lateralis muscle. Skeletal muscle obtained from young healthy male (n = 13, age: 23.2 ± 5.0 years) and female subjects (n = 12, age: 21.7 ± 4.3 years) was analyzed for CreaT mRNA, CreaT protein and TCr content. Total CreaT protein content in the muscle was similar (p > 0.05) between the sexes. Two bands (~ 55 and 73 kDa) of the CreaT protein were detected in all muscle samples. Both the 55 and the 73 kDa bands were present in similar (p > 0.05) amounts in males compared with females. The 73 kDa band was in greater abundance (p < 0.05) than the 55 kDa band, irrespective of gender. In addition, CreaT mRNA expression relative to ß-actin mRNA and the TCr content (males: 117.8 ± 2.2, females: 125.3 ± 4.3 mmol.kg–1 dry mass) were also unaffected (p > 0.05) by gender. These data demonstrate that gender does not influence skeletal muscle TCr content and CreaT gene expression in young human subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to assess the effects of short-term sprint training on transient changes in monocarboxylate lactate transporter 1 (MCT1) and MCT4 protein and mRNA content. Seven moderately endurance-trained runners (mean ± SE; age 27.7±2.9 years, body mass 81.1±5.9 kg, VO2 max 58.1±2.0 ml kg−1 min−1) completed a VO2 max and a supramaximal running test to exhaustion (RTE) before and after a 6-week period of sprint training. The sprint training was progressive and consisted of 18 sessions of near maximal short duration (5–15 s) sprints to compliment the athlete’s endurance training. Prior to the training period there was a significant (P<0.05) increase in MCT1, but not MCT4 protein, 2 h after the RTE. This occurred without any change in corresponding mRNA levels. After the training period, there was a significant increase in MCT1 protein but no significant change in the MCT4 isoform. Both MCT1 and MCT4 mRNA was significantly lower at rest and 2 h post-RTE after the completion of the training period. After the training period, there was a significant increase in the time to exhaustion and distance covered during the RTE. This study demonstrates that sprint training of this length and type results in an upregulation of MCT1 protein, but not MCT4 content. Additionally, this study shows conflicting adaptations in MCT1 and MCT4 protein and mRNA levels following training, which may indicate post-transcriptional regulation of MCT expression in human muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic copper entering blood plasma binds tightly to albumin and the macroglobulin transcuprein. It then goes primarily to the liver and kidney except in lactation, where a large portion goes directly to the mammary gland. Little is known about how this copper is taken up from these plasma proteins. To examine this, the kinetics of uptake from purified human  albumin and α2-macroglobulin, and the effects of inhibitors, were measured using human hepatic (HepG2) and mammary epithelial (PMC42) cell lines. At physiological concentrations (3–6 µM), both cell types took up copper from these proteins independently and at rates similar to each other and to those for Cu-dihistidine or Cu-nitrilotriacetate (NTA). Uptakes from   α2-macroglobulin indicated a single saturable system in each cell type, but with different kinetics, and 65–80% inhibition by Ag(I) in HepG2 cells but not PMC42 cells. Uptake kinetics for Cu-albumin were more complex and also differed with cell type (as was the case for Cu-histidine and NTA), and there was little or no inhibition by Ag(I). High Fe(II) concentrations (100–500 µM) inhibited copper uptake from albumin by 20–30% in both cell types and that from {alpha}2-macroglobulin by 0–30%, and there was no inhibition of the latter by Mn(II) or Zn(II). We conclude that the proteins mainly responsible for the plasma-exchangeable copper pool deliver the metal to mammalian cells efficiently and by several different mechanisms.α2-Macroglobulin delivers it primarily to copper transporter 1 in hepatic cells but not mammary epithelial cells, and additional as-yet-unidentified copper transporters or systems for uptake from these proteins remain to be identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to examine the relationship between skeletal muscle monocarboxylate transporters 1 and 4 (MCT1 and MCT4) expression, skeletal muscle oxidative capacity and endurance performance in trained cyclists. Ten well-trained cyclists (mean ± SD; age 24.4 ± 2.8 years, body mass 73.2 ± 8.3 kg, VO2max 58 ± 7 ml kg−1 min−1) completed three endurance performance tasks [incremental exercise test to exhaustion, 2 and 10 min time trial (TT)]. In addition, a muscle biopsy sample from the vastus lateralis muscle was analysed for MCT1 and MCT4 expression levels together with the activity of citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD). There was a tendency for VO2max and peak power output obtained in the incremental exercise test to be correlated with MCT1 (r = −0.71 to −0.74; P < 0.06), but not MCT4. The average power output (P average) in the 2 min TT was significantly correlated with MCT4 (r = −0.74; P < 0.05) and HAD (r = −0.92; P < 0.01). The P average in the 10 min TT was only correlated with CS activity (r = 0.68; P < 0.05). These results indicate the relationship between MCT1 and MCT4 as well as cycle TT performance may be influenced by the length and intensity of the task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reabsorption of filtered urea by the kidney is essential for retaining high levels of urea in marine cartilaginous fish. Our previous studies on the shark facilitative urea transporter (UT) suggest that additional UT(s) comprising the urea reabsorption system could exist in the cartilaginous fish kidney. Here, we isolated three cDNAs encoding UTs from the kidney of elephant fish, Callorhinchus milii, and termed them efUT-1, efUT-2 and efUT-3. efUT-1 is orthologous to known elasmobranch UTs, while efUT-2 and efUT-3 are novel UTs in cartilaginous fish. Two variants were found for efUT-1 and efUT-2, in which the NH2-terminal intracellular domain was distinct between the variants. Differences in potential phosphorylation sites were found in the variant-specific NH2-terminal domains. When expressed in Xenopus oocytes, all five UT transcripts including the efUT-1 and efUT-2 variants induced more than a 10-fold increase in [14C] urea uptake. Phloretin inhibited dose-dependently the increase of urea uptake, suggesting that the identified UTs are facilitative UTs. Molecular phylogenetic analysis revealed that efUT-1 and efUT-2 had diverged in the cartilaginous fish lineage, while efUT-3 is distinct from efUT-1 and efUT-2. The present finding of multiple UTs in elephant fish provides a key to understanding the molecular mechanisms of urea reabsorption system in the cartilaginous fish kidney.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the metabolic and structural consequences of a decrease in glucose transporter-4 (GLUT4) levels on the heart. The CreLoxP system was utilised to delete GLUT4 in muscle tIssue including heart. The presence of the PGK-neoR cassette in the GLUT4-Lox mice resulted in reduced expression in all tIssues to levels 15-30% of wild-type control mice. In mice expressing Cre recombinase, there was a further reduction of GLUT4 in cardiac tIssue to almost undetectable levels. Cardiac glucose uptake was measured basally and during a uglycaemic/hyperinsulinaemic clamp using 2-deoxy-[1-(14)C]glucose. Insulin-stimulated glucose uptake was normal in hearts expressing 15% of normal GLUT4 levels but markedly reduced in mice with more profound reduction in GLUT4. Cardiac enlargement occurred only when GLUT4 levels were less than 5% of normal values. In heart there is a threshold level of GLUT4 above which insulin-stimulated glucose uptake is maintained. As little as 5% of normal GLUT4 levels expressed in heart is sufficient to prevent the development of cardiac hypertrophy. 2-deoxy-[1-14C]glucose. Insulin-stimulated glucose uptake was normal in hearts expressing 15% of normal GLUT4 levels but markedly reduced in mice with more profound reduction in GLUT4. Cardiac enlargement occurred only when GLUT4 levels were less than 5% of normal values. In heart there is a threshold level of GLUT4 above which insulin-stimulated glucose uptake is maintained. As little as 5% of normal GLUT4 levels expressed in heart is sufficient to prevent the development of cardiac hypertrophy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.      Skeletal muscle is a highly plastic tissue that has a remarkable ability to adapt to external demands, such as exercise. Many of these adaptations can be explained by changes in skeletal muscle gene expression. A single bout of exercise is sufficient to induce the expression of some metabolic genes. We have focused our attention on the regulation of glucose transporter isoform 4 (GLUT-4) expression in human skeletal muscle.

2.      Glucose transporter isoform 4 gene expression is increased immediately following a single bout of exercise, and the GLUT-4 enhancer factor (GEF) and myocyte enhancer factor 2 (MEF2) transcription factors are required for this response. Glucose transporter isoform enhancer factor and MEF2 DNA binding activities are increased following exercise, and the molecular mechanisms regulating MEF2 in exercising human skeletal muscle have also been examined.

3.      These studies find possible roles for histone deacetylase 5 (HDAC5), adenosine monophosphate–activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) and p38 mitogen-activated protein kinase (MAPK) in regulating MEF2 through a series of complex interactions potentially involving MEF2 repression, coactivation and phosphorylation.

4.      Given that MEF2 is a transcription factor required for many exercise responsive genes, it is possible that these mechanisms are responsible for regulating the expression of a variety of metabolic genes during exercise. These mechanisms could also provide targets for the treatment and management of metabolic disease states, such as obesity and type 2 diabetes, which are characterized by mitochondrial dysfunction and insulin resistance in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycogen availability can influence glucose transporter 4 (GLUT4) expression in skeletal muscle through unknown mechanisms. The multisubstrate enzyme AMP-activated protein kinase (AMPK) has also been shown to play an important role in the regulation of GLUT4 expression in skeletal muscle. During contraction, AMPK [alpha]2 translocates to the nucleus and the activity of this AMPK isoform is enhanced when skeletal muscle glycogen is low. In this study, we investigated if decreased pre-exercise muscle glycogen levels and increased AMPK [alpha]2 activity reduced the association of AMPK with glycogen and increased AMPK [alpha]2 translocation to the nucleus and GLUT4 mRNA expression following exercise. Seven males performed 60 min of exercise at ~70% [VO.sub.2] peak on 2 occasions: either with normal (control) or low (LG) carbohydrate pre-exercise muscle glycogen content. Muscle samples were obtained by needle biopsy before and after exercise. Low muscle glycogen was associated with elevated AMPK [alpha]2 activity and acetyl-CoA carboxylase [beta] phosphorylation, increased translocation of AMPK [alpha]2 to the nucleus, and increased GLUT4 mRNA. Transfection of primary human myotubes with a constitutively active AMPK adenovirus also stimulated GLUT4 mRNA, providing direct evidence of a role of AMPK in regulating GLUT4 expression. We suggest that increased activation of AMPK [alpha]2 under conditions of low muscle glycogen enhances AMPK [alpha]2 nuclear translocation and increases GLUT4 mRNA expression in response to exercise in human skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adequate amounts of copper in milk are critical for normal neonatal development, however the mechanisms regulating copper supply to milk have not been clearly defined. PMC42-LA cell cultures representative of resting, lactating and suckled mammary epithelia were used to investigate the regulation of the copper uptake protein, CTR1. Both the degree of mammary epithelial differentiation (functionality) and extracellular copper concentration greatly impacted upon CTR1 expression and its plasma membrane association. In all three models (resting, lactating and suckling) there was an inverse correlation between extracellular copper concentration and the level of CTR1. Cell surface biotinylation studies demonstrated that as extracellular copper concentration increased membrane associated CTR1 was reduced. There was a significant increase in CTR1 expression (total and membrane associated) in the suckled gland model in comparison to the resting gland model, across all copper concentrations investigated (0-50 μM). Regulation of CTR1 expression was entirely post-translational, as quantitative real-time PCR analyses showed no change to CTR1 mRNA between all models and culture conditions. X-ray fluorescence microscopy on the differentiated PMC42-LA models revealed that organoid structures distinctively accumulated copper. Furthermore, as PMC42-LA cell cultures became progressively more specialised, successively more copper accumulated in organoids (resting