22 resultados para Miller, Clay

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper is an important micronutrient and trace amounts are essential for crop growth. However, high concentrations of copper will produce toxic effects. Australia is increasingly developing production of crops in water repellent soils. Clay amendment, a common amelioration techniques used in Australia, has demonstrated agronomic benefits in increased crop or pasture production. The sorption and desorption of copper and the effect of clay treatment on copper behaviour in a water repellent soil collected from an experimental farm in South Australia is studied. We found that the water repellent soils amended with clay have an increased adsorption capacity of copper. Also the clay-amended soils had an increased ratio of specific sorption to total sorption of copper. The implications of this study to the sustainable agro-environmental management of water repellent soils is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little attention has been paid to the possibility that soil water repellency could enhance non-equilibrium water flow and solute transport through macropores present in structured clay soils. In this study, we measured infiltration and solute transport in a clay soil under near-saturated conditions in both the field using tension infiltrometers and in the laboratory on undisturbed soil columns. Measurements were made on adjacent plots under grass and continuous arable cultivation. Steady-state field infiltration rates measured using water and ethanol as the infiltrating fluids demonstrated that the soil macroporosity under grass was better developed, but that much of the structural pore system was inactive due to water repellency. No water repellency was detected on the arable plot disturbed by tillage. Dye tracing showed that the conducting macroporosity was largely comprised of earthworm channels in the grassed plot and inter-aggregate voids resulting from ploughing in the arable plot. Tracer breakthrough curves measured on field-dry soil indicated rapid macropore transport in columns taken from both plots, although the degree of non-equilibrium transport appeared somewhat stronger under grass. This result, which was attributed to water repellency, was also consistent with the larger flow-weighted mean pore size found in the field infiltration experiments. It is concluded that water repellency in undisturbed structured clay soils can have significant effects on the occurrence of non-equilibrium water and solute transport in macropores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naarah Sawers is an Alfred Deakin Post-Doctoral Research Fellow at Deakin University where she is researching environmental agendas in computer games for children. She has also published and researched in children's literature in the area of feminist bio-ethics and agency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paleo Lake Bungunnia covered more than 40 000 km2 of southern Australia during the Plio-Pleistocene, although the age and origin of the lake remain controversial. The Blanchetown Clay is the main depositional unit and outcrop at Nampoo Station in far-western New South Wales provides the most continuous lacustrine section preserved in the basin. Here the Blanchetown Clay represents the maximum lake fill and comprises: (i) a basal well-sorted sand with interbedded clay (Chowilla Sand), representing initial flooding at the time of lake formation; (ii) a thick sequence of green-grey clay comprised dominantly of kaolinite and illite, with the apparently cyclic occurrence of illite interpreted to represent cool and dry glacial climatic intervals; and (iii) a 2.6 m-thick sequence of finely laminated silt and silty clay, here defined as the Nampoo Member of the Blanchetown Clay. New magnetostratigraphic data constrain the age of the oldest lake sediments to be younger than 2.581 Ma (Matuyama-Gauss boundary) and probably as young as 2.4 Ma. This age is significantly younger than the age of 3.2 Ma previously suggested for lake formation. The youngest Blanchetown Clay is older than 0.781 Ma (Brunhes-Matuyama boundary) and probably as old as 1.2 Ma. The Nampoo Station section provides a framework for the construction of a regional Plio-Pleistocene stratigraphy in the Murray Basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The salt attack of Fired Clay Bricks (FCBs) causes surface damage that is aesthetically displeasing and eventually leads to structural damage. Methods for determining the resistances of FCBs to salt weathering have mainly tried to simulate the process by using accelerating aging tests. Most research in this area has concentrated on the types of salt that can cause damage and the damage that occurs during accelerated aging tests. This approach has lead to the use of accelerated aging tests as standard methods for determining resistance. Recently, it has been acknowledged that are not the most reliable way to determine salt attack resistance for all FCBs in all environments. Few researchers have examined FCBs with the aim of determining which material and mechanical properties make a FCB resistant to salt attack. The aim of this study was to identify the properties that were significant to the resistance of FCBs to salt attack. In doing so, this study aids in the development of a better test method to assess the resistance of FCBs to salt attack. The current Australian Standard accelerated aging test was used to measure the resistance of eight FCBs to salt attack using sodium sulfate and sodium chloride. The results of these tests were compared to the water absorption properties and the total porosity of FCBs. An empirical relationship was developed between the twenty-four-hour water absorption value and the number of cycles to failure from sodium sulfate tests. The volume of sodium chloride solution was found to be proportional to the total porosity of FCBs in this study. A phenomenological discussion of results led to a new mechanism being presented to explain the derivation of stress during salt crystallisation of anhydrous and hydratable salts. The mechanical properties of FCBs were measured using compression tests. FCBs were analysed as cellular materials to find that the elastic modules of FCBs was equivalent for extruded FCBs that had been fired a similar temperatures and time. Two samples were found to have significantly different elastic moduli of the solid microstructure. One of these samples was a pressed brick that was stiffer due to the extra bond that is obtained during sintering a closely packed structure. The other sample was an extruded brick that had more firing temperature and time compared with the other samples in this study. A non-destructive method was used to measure the indentation hardness and indentation stress-strain properties of FCBs. The indentation hardness of FCBs was found to be proportional to the uniaxial compression strength. In addition, the indentation hardness had a better linear correlation to the total porosity of FCBs except for those samples that had different elastic moduli of the solid microstructure. Fractography of exfoliated particles during salt cycle tests and compression tests showed there was a similar pattern of fracture during each failure. The results indicate there were inherent properties of a FCB that determines the size and shape of fractured particles during salt attack. The microstructural variables that determined the fracture properties of FCBs were shown to be important variables to include in future models that attempt to estimate the resistance of FCBs to salt attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effect of both the mixing technique and heating rate during cure on the dispersion of montmorillonite (MMT) clay in an epoxy resin. The combination of sonication and using a 10. °C/min heating rate during cure was found to facilitate the dispersion of nanoclay in epoxy resin. These processing conditions provided a synergistic effect, making it possible for polymer chains to penetrate in-between clay galleries and detach platelets from their agglomerates. As the degree of dispersion was enhanced, the flexural modulus and strength properties were found to decrease by 15% and 40%, respectively. This is thought to be due to individual platelets fracturing in the nanocomposite. Complementary techniques including X-ray diffraction (XRD), small angle X-ray scattering (SAXS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and optical microscopy were essential to fully characterise localised and spatial regions of the clay morphologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stability charts for soil slopes were first produced by Taylor in 1937 and they continue to be used extensively as design tools and draw the attention of many investigators. From a review of literature, it was found that there is no convenient solution has been provided for cohesive materials filled on purely cohesive undrained clay. A recent study revealed that the embankment slope which has two-layered clays failed in an undrained state which shows the importance of this study. In order to obtain the solutions for this type of fill slope. A number of numerical method are employed, namely the finite element upper and lower bound limit analysis methods and limit equilibrium method. The numerical upper and lower bound limit analysis method can bracket true solutions within a small range (6%). The solutions of limit equilibrium analysis are used for comparison purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Initially, synergistic reinforcement PVA composite has been successfully developed by using graphene and MMT. Furthermore, new knowledge of the crystallization mechanism of the PVA and PVA composites was revealed. Finally, Isothermal degradation kinetics models and mechanism of the as-prepared composites were also proposed.