122 resultados para Milled powders

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-stage procedure of ball milling and annealing in air represents a prospective method of preparing nanorods of V2O5 with electrochemical properties suitable for the application in lithium-ion batteries. Commercially purchased V2O5 powder is milled in a ball mill as the first step of the synthesis. The as-milled precursor is subsequently annealed in air to produce the morphology of nanorods via solid-state recrystallization. We have recently investigated intermediate stages of the formation of nanorods, and this paper summarizes the synthesis method including the description of the current understanding of the growth mechanism. The obtained V2O5 nanorods have been assessed as an electrode material for both anodes and cathodes of lithium-ion batteries. When used in cathodes, the nanorods demonstrate a better retention of capacity upon cycling than that of the commercially available powder of V2O5. When used in anodes, the performances of nanorods and the reference V2O5 powder are similar to a large extent, which is related to a different operating mechanism of V2O5 in anodes. The experimentally observed capacity of V2O5 nanorods in an anode has stabilized at the level of about 450 mAh/g after few cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various types of titanium alloys with high strength and low elastic modulus and, at the same time, vanadium and aluminium free have been developed as surgical biomaterials in recent years. Moreover, porous metals are promising hard tissue implants in orthopaedic and dentistry, where they mimic the porous structure and the low elastic modulus of natural bone. In the present study, new biocompatible Ti-based alloy foams with approximate relative densities of 0.4, in which Sn and Nb were added as alloying metals, were synthesised through powder metallurgy method.
The new alloys were prepared by mechanical alloying and subsequently sintered at high temperature using a vacuum furnace. The characteristics and the processability of the ball milled powders and the new porous titanium-based alloys were characterised by X-ray diffraction, optical
microscopy and scanning electron microscopy .The mechanical properties of the new titanium alloys were examined by Vickers microhardness measurements and compression testing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium (Ti) and nickel (Ni) elemental powders were blened by ball milling and the ball milled powders were employed to fabricate NiNi shape memory alloy (SMA) foams by space sintering. Effect of ball milling time on phase constitutes of the sintered TiNi alloy foams was studied by X-ray diffraction (XRD) analysis.Scanning election microscopy (SEM) was used to characterize the porous structure, and compressive tests were carried out to evaluate the mechanical properties of the foams. Results indicate the porosities of the TiNi alloy foams can be controlled by using the spacer sincering method, and the porosities show a significant effect on the mechanical prperties and shape memory effect (SME).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A MoO3-carbon nanocomposite was synthesized from a mixture of MoO3 and graphite by a controlled ball milling procedure. The as-prepared product consists of nanosized MoO3 particles (2-180 nm) homogeneously distributed in carbon matrix. The nanocomposite acts as a high capacity anode material for lithium-ion batteries and exhibits good cyclic behavior. Its initial capacity exceeds the theoretical capacity of 745 mA h g-1 in a mixture of MoO3 and graphite (1:1 by weight), and the stable capacity of 700 mA h g-1 (94% of the theoretical capacity) is still retained after 120 cycles. The electrode performance is linked with the unique nanoarchitecture of the composite and is compared with the performance of MoO3-based anode materials reported in the literature previously (nanoparticles, ball milled powders, and carbon-coated nanobelts). The high value of capacity and good cyclic stability of MoO3-carbon nanocomposite are attractive in respect to those of the reported MoO3 electrodes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combined effects of varying amounts of surfactant (ethylene bis-stearamide; EBS) and milling time on the compressibility of ball-milled Ti-10Nb-3Mo (wt.%) alloy were investigated. Ball milling process was performed on the elemental powders with different amounts of EBS (0-3. wt.%) for 5 and 10. h, and the ball-milled powders were consolidated by a uniaxial cold pressing in the range of 500-1100. MPa. Results indicated that the addition of surfactant in ball milling process lead to significant changes in particle packing density. The relative density was higher for powders ball milled with larger amounts of EBS and for the shorter milling time. The compressibility of powders was examined by the compaction equation developed by Panelli and Ambrosio Filho. The densification parameter (A) increased with the increasing amount of EBS, and decreased with increasing milling time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of milling time on the powder packing characteristics and compressive mechanical properties of a biomedical Ti-10Nb-3Mo alloy (wt.%) was investigated. Ball milling was performed on elemental metal powders at different milling times of 0 (blended), 2, 4, 6, 8, and 10 h. This article demonstrates that despite the beneficial effects of ball milling technique in the mechanical alloying of the Ti-based alloy, the ball-milled powders synthesized at longer milling times can adversely affect the packing density and significantly diminish the compressive mechanical properties of the sintered powders. Crown

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study reports the fabrication of ultra-fine powders from animal protein fibres such as cashmere guard hair, merino wool and eri silk along with their free volume aspects. The respectively mechanically cleaned, scoured and degummed cashmere guard hair, wool and silk fibres were converted into dry powders by a process sequence: Chopping, Attritor Milling, and Spray Drying. The fabricated protein fibre powders were characterised by scanning electron microscope, particle size distribution and positron annihilation lifetime spectroscopy (PALS). The PALS results indicated that the average free volume size in protein fibres increased on their wet mechanical milling with a decrease in the corresponding intensities leading to a resultant decrease in their fractional free volumes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air-atomized pure aluminium powder with 15 at.% MgB2 was mechanically milled (MMed) by using a vibrational ball mill, and MMed powders were consolidated by spark plasma sintering (SPS) to produce composite materials with high specific strength. Solid-state reactions of MMed powders have been examined by X-ray diffraction (XRD), and mechanical properties of the SPSed materials have been evaluated by hardness measurements and compression tests. Orientation images of microstructures were obtained via the electron backscatter diffraction (EBSD) technique.

The solid-state reactions in the Al–15 at.% MgB2 composite materials occurred between the MMed powders and process control agent (PCA) after heating at 773–873 K for 24 h. The products of the solid-state reaction were a combination of AlB2, Al3BC and spinel MgAl2O4. Mechanical milling (MM) processing time and heating temperatures affect the characteristics of those intermetallic compounds. As the result of the solid-state reactions in MMed powders, a hardness increase was observed in MMed powders after heating at 573–873 K for 24 h. The full density was attained for the SPSed materials from 4 h or 8 h MMed powders in the Al–15 at.% MgB2 composite materials under an applied pressure of 49 MPa at 873 K for 1 h. The microstructure of the SPSed materials fabricated from the MMed powders presented the bimodal aluminium matrix grain structure with the randomly distributions. The Al–15 at.% MgB2SPSed material from powder MMed for 8 h exhibited the highest compressive 0.2% proof strength of 846 MPa at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of ultrafine cerium dioxide (CeO2) powders via mechanochemical reaction and subsequent calcination was studied. Anhydrous CeCl3 and NaOH powders, along with NaCl diluent, were mechanically milled. A solid-state displacement reaction—CeCl3+ 3NaOH → Ce(OH)3+ 3NaCl—was induced during milling in a steady-state manner. Calcination of the as-milled powder in air at 500°C resulted in the formation of CeO2 nanoparticles in the NaCl matrix. A simple washing process to remove the NaCl yielded CeO2 particles ∼10 nm in size. The particle size was controlled in the range of ∼10–500 nm by changing the calcination temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO powder showed anomalous evaporation behavior after its mechanical milling treatment under high-energy conditions. The amount of generated vapor is about 10 times higher in the first 15 min of annealing at 1300 °C than that of unmilled ZnO powders. The strong ball impacts are responsible for the greatly enhanced evaporation ability. Low-energy ball milling involving shearing actions and rare weak impacts leads only to a small evaporation rate enhancement. The possible explanation of the high evaporation rate of the heavily milled material is the existence of large fraction of weakly bonded atoms in grain boundaries, surface defects and strained areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A process for the production of ultrafine powders consisting of individual particles with sizes in the range of 1 nm to 200 nm, which is based on the mechanical milling of two or more non-reacting powders. The process includes subjecting a suitable precursor metal compound and a non-reactant diluent phased to mechanical milling which through the process of mechanical activation reduces the microstructure of the mixture of the form of nano-sized grains of the metal compound uniformly dispersed in the diluent phase. Heat treating the milled powder converts the nano-sized grains of the precursor metal compound into a desired metal oxide phase. Alternatively, the precursor metal compound may itself be an oxide phase which has the requisite milling properties to form nanograins when milled with a diluent. An ultrafine powder is produced by removing the diluent phase such that nano-sized grains of the desired metal oxide phase are left behind. The process facilitates a significant degree of control over the particle size and size distribution of the particles in the ultrafine powder by controlling the parameters of mechanical activation and heat treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aluminium-rich ternary aluminium borocarbide, Al3BC was synthesised for the first time by solid-state reactions occurring during heat treatments after mechanical milling (MM) of pure aluminium with 15 or 50 at% MgB2 powder mixtures in the presence of the process control agent (PCA).

The solid-state reactions in the Al–15 and 50 at% MgB2 composite materials occurred between the MMed powders and process control agent (PCA) after heating at 773–873 K for 24 h. The products of the solid-state reaction induced Al3BC, AlB2, γ-Al2O3 and spinel MgAl2O4. MM processing time and heating temperatures in the Al–15 and 50 at% MgB2 composite materials affected the selection of those intermetallic compounds. When MM processing time was increased for a given composition, the formation of the Al3BC compound started at lower heat treatment temperatures. However, when the amount of MgB2 was increased in the 4 h MM processing regime, the formation of the Al3BC compound during heating was suppressed. As a result of the solid-state reactions in MMed powders the hardness was observed to increase after heating at 573–873 K for 24 h.

The fully dense bulk nano-composite materials have been successfully obtained through the combination of the MM and spark plasma sintering (SPS) processes for the 4 h or 8 h MMed powders of the Al–15 at% MgB2 composite materials sintered under an applied pressure of 49 MPa at 873 K for 1 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous 55Mg35NilOSi alloy powder has been synthesized by mechanical alloying technique using pure Mg, Ni and Si elemental powders. The transformation of the crystalline powders into an amorphous one has been investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry. The new material produced has a higher thermal stability than reported results, which is beneficial to the fabrication of Mg-Ni-Si bulk amorphous components through powder metallurgy.