121 resultados para Milk-clotting enzyme

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

β-D-galactosidase (EC 3.2.1.23) from Kluyveromyces marxianus YW-1, an isolate from whey, has been studied in terms of cell disruption to liberate the useful enzyme. The enzyme produced in a bioreactor on a wheat bran medium has been successfully immobilized with a view to developing a commercially usable technology for lactose hydrolysis in the food industry. Three chemical and three physical methods of cell disruption were tested and a method of grinding with river sand was found to give highest enzyme activity (720 U). The enzyme was covalently immobilized on gelatin. Immobilized enzyme had optimum pH and temperature of 7.0 and 40 °C, respectively and was found to give 49% hydrolysis of lactose in milk after 4 h of incubation. The immobilized enzyme was used for eight hydrolysis batches without appreciable loss in activity. The retention of high catalytic activity compared with the losses experienced with several previously reported immobilized versions of the enzyme is significant. The method of immobilization is simple, effective, and can be used for the immobilization of other enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products.

Results: Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1β and TNF-α) and up-regulated IFN-γ, IL-2 and IL-10.

Conclusion: Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel disease (IBD). Stimulation of normal human fetal intestinal cell proliferation without cell cytotoxicity indicates it may also be given as infant food particularly for premature babies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemoprevention by dietary constituents in the form of functional food has emerged as a novel approach to control inflammatory diseases and cancers. Recently we reported for the first time that iron content is a critical determinant in the anti-tumour activity of bovine milk lactoferrin (bLf). We therefore wanted to evaluate the chemo-preventative efficacy of Apo-bLF and 100% iron-saturated bLF (Fe-bLF) on hydrogen peroxide (H2O 2)-induced colon carcinogenesis, and their influence on antioxidant enzyme activities within colon carcinogenesis. This was undertaken through observing how oxidative stress induced by H2O2 alters antioxidant enzyme activity within HT29 colon cancer cells, and then observing changes in this activity by treatments with the different antioxidants ascorbic acid (AA), Apo-bLF and Fe-bLF. All antioxidant enzymes (catalase, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-transferase (GsT) and superoxide dismutase (SOD)) appeared to be increased within HT29 cells, even prior to H2O2 exposure, and all enzymes showed significant decreased activity when cells were treated with the antioxidants AA, Apo-bLF or Fe-bLF, with or without H2O2 exposure. The results indicate that all three antioxidants have the ability to scavenge ROS, lower antioxidant enzyme activities within already excited states, and possibly allow colon cancer cells to be overcome by oxidative stress that would normally be prevented, perhaps leading to damage and potential apoptosis of the cancer cells. In conclusion, the anti-oxidative effects of Apo-bLF and Fe-bLf studied for the first time, show dynamic changes that may allow for necessary protection from imbalanced oxidative conditions, and potential at reducing the ability of cancer cells to protect themselves from oxidative stress states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer and many chronic inflammatory diseases are associated with increased amounts of reactive oxygen species (ROS). The potential cellular and tissue damage created by ROS has significant impact on many disease and cancer states and natural therapeutics are becoming essential in regulating altered redox states. We have shown recently that iron content is a critical determinant in the antitumour activity of bovine milk lactoferrin (bLF). We found that 100% iron-saturated bLF (Fe-bLF) acts as a potent natural adjuvant and fortifying agent for augmenting cancer chemotherapy and thus has a broad utility in the treatment of cancer. Furthermore, we also studied the effects of iron saturated bLF's ability as an antioxidant in the human epithelial colon cancer cell line HT29, giving insights into the potential of bLF in its different states. Thus, metal saturated bLF could be implemented as anti-cancer neutraceutical. In this regard, we have recently been able to prepare a selenium (Se) saturated form of bLF, being up to 98% saturated. Therefore, the objectives of this study were to determine how oxidative stress induced by hydrogen peroxide (H2O2) alters antioxidant enzyme activity within HT29 epithelial colon cancer cells, and observe changes in this activity by treatments with different antioxidants ascorbic acid (AA), Apo (iron free)-bLF and selenium (Se)-bLF. The states of all antioxidant enzymes (glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-transferase (GsT), catalase and superoxide dismutase (SOD)) demonstrated high levels within untreated HT29 cells compared to the majority of other treatments being used, even prior to H2O2 exposure. All enzymes showed significant alterations in activity when cells were treated with antioxidants AA, Apo-bLF or Se-bLF, with and/or without H2O2 exposure. Obvious indications that the Se content of the bLF potentially interacted with the glutathione (GSH)/GPx/GR/GsT associated redox system could be observed immediately, showing capability of Se-bLF being highly beneficial in helping to maintain a balance between the oxidant/antioxidant systems within cells and tissues, especially in selenium deficient systems. In conclusion, the antioxidative defence activity of Se-bLf, investigated in this study for the first time, shows dynamic adaptations that may allow for essential protection from the imbalanced oxidative conditions. Because of its lack of toxicity and the availability of both selenium and bLF in whole milk, Se-bLF offers a promise for a prospective natural dietary supplement, in addition to being an immune system enhancement, or a potential chemopreventive agent for cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enzymatic hydrolysis is a widely used approach to improve the functional, nutritionaland physiological properties of food proteins. In this study, cross-linked enzyme aggre-gates (CLEAs) have been prepared from cell-envelope proteinases (CEPs) of Lactobacillusdelbrueckii subsp. lactis 313 and their proteolytic properties have been evaluated using severalfood proteins. We have optimized cross-linking conditions including ammonium sulphateconcentration, incubation temperatures, agitation speed, glutaraldehyde cross-linker con-centration, reaction time and the addition of proteic feeders. Particularly, the presence ofBSA improves retained activity of cross-linked CEP aggregates (CLCEPAs) from 21.5% to 40.9%.Blocking unreacted cross-linking groups on aggregates is important to enhance recyclabil-ity of CLCEPAs. CLCEPAs had attractive thermal stability at 50◦C and it showed enhancedcatalytic activity over long-term storage after lyophilization. We have demonstrated thatCLCEPAs has proteolytic properties on different food proteins including complex (chickenegg albumin, skimmed-milk protein), fractionated (bovine casein, whey protein isolate), andpurified (bovine serum albumin) proteins. Being the first report of CLEAs from lactobacilliCEPs, this study demonstrates the feasibility of using LDL 313 CLCEPAs for degradation ofvarious food proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter discusses technical details of enzyme immobilization and its application in the food industry. The chapter first presents the various immobilization technologies, including the pros and cons of each immobilization method and a description of the various classes of immobilization support materials that are food compatible. It then discusses two case studies using immobilized enzymes in the food industry, namely, lactose hydrolysis and milk protein degradation by immobilized enzymes. Recent advances in enzyme immobilization techniques, including the use of nanoparticles and fusion proteins, are presented followed by their implications for the food industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The tx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell. Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multi-vesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of tx mice

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic arsenic (jAs), a known human carcinogen, acts as a tumor promoter in part by inducing a rapid burst of reactive oxygen species (ROS) in mammalian cells. This causes oxidative stress and a subsequent increase in the level of cellular glutathione (GSH). Glutathione, a ubiquitous reducing sulfhydryl tripeptide, is involved in ROS detoxification and its increase may be part of an adaptive response to the oxidative stress. Glutathione related enzymes including glutathione reductase (GR) and glutathione S-transferase (GST) also play key roles in these processes. In this study the regulatory effects of inorganic arsenite (As111) on the activities of GSH-related enzymes were investigated in cultured human keratinocytes. Substantial increases in GR enzyme activity and mRNA levels were shown in keratinocytes and other human cell lines after exposure to low, subtoxic, micromolar concentrations of As111 for 24 h. Upregulation of GSH synthesis paralleled the upregulation of GR as shown by increases in glutamatecysteine lyase (GeL) enzyme activity and mRNA levels, cystine uptake, and intracellular GSH levels. Glutathione S-transferase activity was also shown to increase slightly in keratinocytes, but not in fibroblasts or breast tumor cells. Overall the results show that sublethal arsenic induces a multicomponent response in human keratinocytes that involves upregulation of parts, but not all of the GSH system and counteracts the acute toxic effects of jAs. The upregulation of GR has not previously been shown to be an integral part of this response, although GR is critical for maintaining levels of reduced GSH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A survey was conducted among 345 randomly selected shoppers in Melbourne, Australia, to identify their perceptions of the healthiness of whole milk, reduced fat milk and soy milk and to investigate demographic influences on health perceptions and types of milk consumption. The survey revealed major differences in shoppers' perceptions of the three types of milk along the themes of bone health, weight control, disease prevention, and, allergy and disease causation. Generally whole milk was perceived more negatively than soy or reduced fat milk. There were few demographic differences in the shoppers' perceptions of the three products. Reported consumption of reduced fat milk was more frequent among women and elderly people, and whole milk consumption was positively related to parenthood. The findings suggest that previous marketing and education campaigns have been effective but the widespread uncertainty and erroneous beliefs about milk products suggest that many consumers have not assimilated new findings about milk products. This represents a challenge for industry and public health practitioners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To identify consumer perceptions of whole milk, reduced-fat milk and soy milk, and to investigate demographic influences on perceptions and types of milk consumption.

Design and setting:
Questionnaires covering nutritional and sensory perceptions of three types of milk.

Subjects:
Three hundred and sixty-one randomly selected shoppers in Melbourne, Australia.

Results
: Generally, respondents held positive perceptions about milk. Milk was considered as having good sensory properties, providing a good source of nutrients, and being a convenient and safe product. However, despite these findings, misperceptions and unawareness about the nutrient content of milk were prevalent. Negative perceptions were most common for whole milk and were mostly related to its perceived high fat, cholesterol and energy contents. Soy milk received lower ratings on sensory quality and convenience than dairy milk. There were few sociodemographic differences in consumers' perceptions. Although reduced-fat milk consumption was more frequent among elderly people and type of milk consumption was related to parenthood, no other significant effects of demographic variables were found on the consumption of specific milk types.

Conclusion:
Although positive perceptions were common, negative perceptions and misperceptions appear to be prevalent, presenting a challenge for nutrition education. Sociodemographic factors were not shown to be important predictors of perceptions and type of milk consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc deficiency, causing impaired growth and development, may have a nutritional or genetic basis. We investigated two cases of inherited zinc deficiency found in breast-fed neonates, caused by low levels of zinc in the maternal milk. This condition is different from acrodermatitis enteropathica but has similarities to the "lethal milk" mouse, where low levels of zinc in the milk of lactating dams leads to zinc deficiency in pups. The mouse disorder has been attributed to a defect in the ZnT4 gene. Little is known about the expression of the human orthologue, hZnT4 (Slc30A4). Sequence analysis of cDNA, real-time PCR and Western blot analysis of hZnT4, carried out on control cells and cells from unrelated mothers of two infants with zinc deficiency, showed no differences. The hZnT4 gene was highly expressed in mouthwash buccal cells compared with lymphoblasts and fibroblasts. The hZnT4 protein did not co-localise with intracellular free zinc pools, suggesting that hZnT4 is not involved in transport of zinc into vesicles destined for secretion into milk. This observation, combined with phenotypic differences between the "lethal milk" mouse and the human disorder, suggests that the "lethal milk" mouse is not the corresponding model for the human zinc deficiency condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this 2-year randomized controlled study of 167 men >50 years of age, supplementation with calcium-vitamin D3-fortified milk providing an additional 1000 mg of calcium and 800 IU of vitamin D3 per day was effective for suppressing PTH and stopping or slowing bone loss at several clinically important skeletal sites at risk for fracture.

Introduction: Low dietary calcium and inadequate vitamin D stores have long been implicated in age-related bone loss and osteoporosis. The aim of this study was to assess the effects of calcium and vitamin D3 fortified milk on BMD in community living men >50 years of age.

Materials and Methods: This was a 2-year randomized controlled study in which 167 men (mean age ± SD, 61.9 ± 7.7 years) were assigned to receive either 400 ml/day of reduced fat (1%) ultra-high temperature (UHT) milk containing 1000 mg of calcium plus 800 IU of vitamin D3 or to a control group receiving no additional milk. Primary endpoints were changes in BMD, serum 25(OH)D, and PTH.

Results:
One hundred forty-nine men completed the study. Baseline characteristics between the groups were not different; mean dietary calcium and serum 25(OH)D levels were 941 ± 387 mg/day and 77 ± 23 nM, respectively. After 2 years, the mean percent change in BMD was 0.9-1.6% less in the milk supplementation compared with control group at the femoral neck, total hip, and ultradistal radius (range, p < 0.08 to p < 0.001 after adjusting for covariates). There was a greater increase in lumbar spine BMD in the milk supplementation group after 12 and 18 months (0.8-1.0%, p ≤ 0.05), but the between-group difference was not significant after 2 years (0.7%; 95% CI, −0.3, 1.7). Serum 25(OH)D increased and PTH decreased in the milk supplementation relative to control group after the first year (31% and −18%, respectively; both p < 0.001), and these differences remained after 2 years. Body weight remained unchanged in both groups at the completion of the study.

Conclusions: Supplementing the diet of men >50 years of age with reduced-fat calcium- and vitamin D3-enriched milk may represent a simple, nutritionally sound and cost-effective strategy to reduce age-related bone loss at several skeletal sites at risk for fracture in the elderly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-term effects of calcium and vitamin D supplementation on bone material and structural properties in older men are not known. The aim of this study was to examine the effects of high calcium (1000 mg/day)- and vitamin-D3 (800 IU/day)-fortified milk on cortical and trabecular volumetric BMD (vBMD) and bone geometry at the axial and appendicular skeleton in men aged over 50 years. One hundred and eleven men who were part of a larger 2-year randomized controlled trial had QCT scans of the mid-femur and lumbar spine (L1–L3) to assess vBMD, bone geometry and indices of bone strength [polar moment of inertia (Ipolar)]. After 2 years, there were no significant differences between the milk supplementation and control group for the change in any mid-femur or L1–L3 bone parameters for all men aged over 50 years. However, the mid-femur skeletal responses to the fortified milk varied according to age, with a split of ≤62 versus >62 years being the most significant for discriminating the changes between the two groups. Subsequent analysis revealed that, in the older men (>62 years), the expansion in mid-femur medullary area was 2.8% (P < 0.01) less in the milk supplementation compared to control group, which helped to preserve cortical area in the milk supplementation group (between group difference 1.1%, P < 0.01). Similarly, for mid-femur cortical vBMD and Ipolar, the net loss was 2.3 and 2.8% less in the milk supplementation compared to control group (P < 0.01 and <0.001, respectively). In conclusion, calcium–vitamin-D3-fortified milk may represent an effective strategy to maintain bone strength by preventing endocortical bone loss and slowing the loss in cortical vBMD in elderly men.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc is an essential trace element required by all living organisms because of its critical roles both as a structural component of proteins and as a cofactor in enzyme catalysis. The importance of zinc in human metabolism is illustrated by the effects of zinc deficiency, which include a diminished immune response, reduced healing and neurological disorders. Furthermore, nutritional zinc deficiency can be fatal in newborn or growing animals. While zinc deficiency is commonly caused by dietary factors, several inherited defects of zinc deficiency have been identified. Acrodermatitis enteropathica is the most commonly described inherited condition found in humans. In several of the few cases that have been reported, this disorder is associated with mutations in the hZIP4 gene, a member of the SLC39 family, whose members encode membranebound putative zinc transporters. Mutations in other members of this family or in different genes may account for other cases of acrodermatitis in which defects in hZIP4 have not been detected. Another inherited form of zinc deficiency occurs in the lethal milk mouse, where a mutation in ZnT4 gene, a member of the SLC30 family of transmembrane proteins results in impaired secretion of zinc into milk from the mammary gland. A similar disorder to the lethal milk mouse occurs in humans. In the few cases studied, no changes in ZnT4 orthologue, hZnT4, were detected. This, and the presence of several minor phenotypic differences between the zinc deficiency in humans and mice, suggests that the human condition is caused by defects in genes that are yet to be identified. Taking into account the fact that there are no definitive tests for zinc deficiency and that this disorder can go undiagnosed, plus the recent identification of multiple members of the SCL30 and SLC39, it is likely that mutations in other genes may underlie additional inherited disorders of zinc deficiency.