25 resultados para Milk production - Brazil

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND : The pigeon crop is specially adapted to produce milk that is fed to newly hatched young. The process of pigeon milk production begins when the germinal cell layer of the crop rapidly proliferates in response to prolactin, which results in a mass of epithelial cells that are sloughed from the crop and regurgitated to the young. We proposed that the evolution of pigeon milk built upon the ability of avian keratinocytes to accumulate intracellular neutral lipids during the cornification of the epidermis. However, this cornification process in the pigeon crop has not been characterised. RESULTS: We identified the epidermal differentiation complex in the draft pigeon genome scaffold and found that, like the chicken, it contained beta-keratin genes. These beta-keratin genes can be classified, based on sequence similarity, into several clusters including feather, scale and claw keratins. The cornified cells of the pigeon crop express several cornification-associated genes including cornulin, S100-A9 and A16-like, transglutaminase 6-like and the pigeon 'lactating' crop-specific annexin cp35. Beta-keratins play an important role in 'lactating' crop, with several claw and scale keratins up-regulated. Additionally, transglutaminase 5 and differential splice variants of transglutaminase 4 are up-regulated along with S100-A10. CONCLUSIONS: This study of global gene expression in the crop has expanded our knowledge of pigeon milk production, in particular, the mechanism of cornification and lipid production. It is a highly specialised process that utilises the normal keratinocyte cellular processes to produce a targeted nutrient solution for the young at a very high turnover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pigeon milk is fed to young pigeons by both their parents. This thesis described the genetic basis of pigeon milk production in the crop and also its effect on young chickens. This revealed that pigeon milk has functional similarities to mammalian milk, and bioactives with future potential in poultry production were identified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Few models are in place for analysis of extreme lactation patterns such as that of the fur seals which are capable of extended down regulation of milk production in the absence of involution. During a 10–12 month lactation period, female fur seals suckle pups on shore for 2–3 days, and then undertake long foraging trips at sea for up to 28 days, resulting in the longest intersuckling bouts recorded. During this time the mammary gland down regulates milk production. We have induced Cape fur seal (Arctocephalus pusillus pusillus) mammary cells in vitro to form mammospheres up to 900 μm in diameter, larger than any of their mammalian counterparts. Mammosphere lumens were shown to form via apoptosis and cells comprising the cellular boundary stained vimentin positive. The Cape fur seal GAPDH gene was cloned and used in RT-PCR as a normalization tool to examine comparative expression of milk protein genes (αS2-casein, β-lactoglobulin and lysozyme C) which were prolactin responsive. Cape fur seal mammary cells were found to be unique; they did not require Matrigel for rapid mammosphere formation and instead deposited their own matrix within 2 days of culture. When grown on Matrigel, cells exhibited branching/stellate morphogenesis highlighting the species-specific nature of cell–matrix interactions during morphological differentiation. Matrix produced in vitro by cells did not support formation of human breast cancer cell line, PMC42 mammospheres. This novel model system will help define the molecular pathways controlling the regulation of milk protein expression and species specific requirements of the extracellular matrix in the cape fur seal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The technology of modern fermented milk production is not complicated and relies largely on the characteristics of the microorganisms used in its manufacture. Biochemical substances excreted by the starter cultures contribute to the chemical, physical and organoleptic properties of cultured milks. Chemical and organoleptic properties of yoghurt starter cultures have been widely studied over several decades. Conversely the biosynthetic processes and genetic control of the production of viscous extracellular material (slime) by selected thermophillic streptococci is still insufficiently understood. This study attempted to elucidate physiological aspects and the genetic control of slime production. An attempt to chemically induce ropiness was also preformed. Twenty strains of Gram positive, thermo-tolerant, milk dotting, catalase negative cocci were collected from a variety of sources. All strains were identified as Streptococcus thermophilus. Four of the isolates were identified as capable of producing an extracellular, ‘ropy’ capsular material. A negative staining method for highlighting capsular material under light microscopy was described. Ropy isolates displayed thick capsular zones of between 6-8 μm. The isolates graded as non-ropy produced only small capsular zones (less than 2 μm); two variants displayed no capsular material. Instability of the ropy phenotype during subculture and prolonged storage was described for all four ropy isolates at varied temperatures. Instability during transfer was reported as moderate with a loss of no more than 45% of ropy colonies after 15 subcultures at 48°C A significant increase in instability, during transfer, associated with an increase in incubation temperature (37-48°C) was also reported. Prolonged storage of ropy variants over ten days resulted in a drop in the number of ropy colonies. The loss was minimal when cultures were stored at 8°C, but excessive (approaching 100%) at 37°C This suggested the presence of capsular degradative substances. Analysis of the plasmid profiles of 20 strains identified only two strains harboured plasmid DNA. All plasmids were small, less than 23kilobases, and each strain possessed a single plasmid species. Only one ropy strain contained plasmid DNA that was shown, with the aid of curing experiments, not to be linked to production of the ropy phenotype. The amino acid analogue p-fluoro-DL-phenylalanine was unsuccessful in generating ropy colonies from non-ropy variants of Streptococcus thermophilus at low concentrations. Some technological considerations for the use of ropy variants of Streptococcus thermophilus in yoghurt starter cultures were made.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Seasonal milk production in Australia has a large impact on the manufacture of cheddar cheese, because the variable milk quality affects cheese moisture content and yield. The influence of cow diet on the composition of milk was investigated together with the effects of variation in milk composition on Cheddar cheese composition and yield. The composition of milk, especially the protein and mineral content, from cows offered diets comprising different energy and protein supplements was correlated with the composition and yield of Cheddar cheese produced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

My dissertation is about the fascinating Australian mammals, platypus and echidna milk components function and milk production. I have investigated the platypus and echidna milk proteins and miRNAs that involved in protection or development of the immature monotreme hatchlings, and investigated the hormonal control of monotreme milk production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The molecular processes underlying human milk production and the effects of mastitic infection are largely unknown because of limitations in obtaining tissue samples. Determination of gene expression in normal lactating women would be a significant step toward understanding why some women display poor lactation outcomes. Here, we demonstrate the utility of RNA obtained directly from human milk cells to detect mammary epithelial cell (MEC)-specific gene expression. Milk cell RNA was collected from five time points (24 h prepartum during the colostrum period, midlactation, two involutions, and during a bout of mastitis) in addition to an involution series comprising three time points. Gene expression profiles were determined by use of human Affymetrix arrays. Milk cells collected during milk production showed that the most highly expressed genes were involved in milk synthesis (e.g., CEL, OLAH, FOLR1, BTN1A1, and ARG2), while milk cells collected during involution showed a significant downregulation of milk synthesis genes and activation of involution associated genes (e.g., STAT3, NF-kB, IRF5, and IRF7). Milk cells collected during mastitic infection revealed regulation of a unique set of genes specific to this disease state, while maintaining regulation of milk synthesis genes. Use of conventional epithelial cell markers was used to determine the population of MECs within each sample. This paper is the first to describe the milk cell transcriptome across the human lactation cycle and during mastitic infection, providing valuable insight into gene expression of the human mammary gland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Manipulation of the composition of milkfat has the potential to improve the nutritional properties and physical functionality of milkfat and its acceptability in the market. The modifications that have been targeted from a nutritional perspective have included:
(a) reducing the ratio of saturated to unsaturated fatty acids;
(b) increasing the level of omega-3 polyunsaturated fatty acids; and
(c) increasing the content of conjugated linoleic acid.
From a physical functionality viewpoint, the outcome targeted has been an improvement in the spreadability of butter by altering milkfat composition to reduce the hardness of milkfat. Both on-farm strategies and the application of appropriate post-farm processing technologies may be used to alter the milkfat composition to enhance its nutritional image and its physical functionality for a range of product applications. However, changes in milkfat composition that are desirable for a specific nutritional purpose or for one type of milk-based product may not meet all the desirable requirements of another milkfat or dairy product. Furthermore, modification of the milkfat composition can also have an influence on the processing characteristics of milk and the quality of finished dairy products. It is essential to substantiate the benefits of specific target nutritional or physical functionality outcomes before the introduction of breeding goals, altered milk production systems or post-farm processing operations to manipulate milkfat composition. This paper reviews the variation in milkfat characteristics and the strategies that have been used to modify milkfat composition to achieve milkfat with altered nutritional and physical functional properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fur seal is a mammal with an unusual ability to turn its milk production on and off without significantly altering the gross morphology of the mammary gland. This atypical lactation cycle is due to the fact that maternal foraging and infant nursing are spatially and temporally separate (Bonner, 1984). Maternal care involves the suckling of offspring over a period of at least 4 months, but lactation can extend to more than 12 months. Following a perinatal fast of approximately 1 week, females depart the breeding colony to forage at sea and, for the remainder of lactation, alternate between short periods ashore suckling their young with longer periods of up to 4 weeks foraging at sea. Whilst foraging at sea, milk production in the fur seal mammary gland either ceases or is reduced (Arnould & Boyd, 1995b).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fur seal (Arctocephalus spp. and Callorhinus spp., members of the pinniped family) is a mammal with the unusual capability to modulate its lactation cycle by turning milk production on and off without the typical mammalian regression and involution of the mammary gland. Lactation has evolved from constraints arising from the spatial and temporal separation of infant nursing and maternal foraging as the mother gives birth and feeds the pup on land while acquisition of nutrients for milk production occurs at sea. The lactation cycle begins with the female fur seal undergoing a perinatal fast of approximately 1 wk, after which time she departs the breeding colony to forage at sea. For the remainder of the long lactation period (116–540 days), the mother alternates between short periods ashore suckling the young with longer periods of up to 4 wk of foraging at sea. Milk production continues while foraging at sea, but at less than 20% the rate of production on land. Fur seals produce one of the richest milk reported, with a very high lipid content contributing up to 85% of total energy. This feature serves as an adaptation to the young's need to produce an insulating blubber layer against heat loss and to serve as an energy store when the mother is away foraging at sea. This atypical pattern of lactation means mothers have long periods with no suckling stimulus and can transfer high-energy milk rapidly while on land to minimize time away from foraging grounds. The absence of suckling stimulus and milk removal during foraging does not result in the onset of involution with associated apoptosis of mammary secretory cells and a subsequent progressive breakdown of the cellular structure of the mammary gland. The mechanisms controlling lactation in the fur seal mammary gland have been investigated using molecular and cellular techniques. These findings have shed light on the processes by which the unique features of lactation in the fur seal are regulated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New Zealand is one of the world’s largest producers of dairy products and has a climate with high levels of solar radiation; however, the use of solar energy in the dairy processing industry has received limited attention. An examination of historical records found that the annual peak in New Zealand milk production and processing occurs at a time when solar radiation levels are increasing markedly. An F-Chart analysis was used to simulate the performance of large-area arrays of solar collectors and to determine their suitability for heating and cooling in a dairy processing environment. For the study four types of solar collectors were analysed: glazed flat plates, evacuated tubes, evacuated tubes with CPC reflectors and a building-integrated solar collector under development at the University of Waikato (UoW). It was found that of these echnologies, both flat plate and evacuated tubes with CPC reflectors could make useful heating and cooling contributions. Furthermore, the solar fraction was determined mainly by the collector area to storage volume ratio. Finally, it was found that the UoW building-integrated solar collector could make a significant contribution to energy use in dairies and may be an attractive future technology for the industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experiment was conducted to measure the effect of diet on circulating concentrations of metabolic hormones and metabolites in cows undergoing extended lactations. Two groups of 6 Holstein-Friesian cows managed for lactations of 670 d were used in the experiment. One group was fully fed on a total mixed ration (TMR), whereas the other group grazed fresh pasture supplemented with grain (P+G). On 7 occasions between 332 and 612 d in milk, concentrations of metabolic hormones and glucose were measured in the blood plasma of each cow. Cows fed TMR gained more weight and body condition than P+G cows, but did not produce more milk during the study period. Only 3 of the TMR cows continued to lactate until 612 d in milk compared with all 6 of the P+G cows. Blood plasma from cows fed TMR had higher concentrations of glucose, insulin, glucagon, insulin-like growth factor 1, and leptin, but lower concentrations of growth hormone, than that from P+G cows. These changes were consistent with the preferential deposition of energy into adipose tissue at the expense of milk production and presumably were induced by a diet that provided precursors for gluconeogenesis that were in excess of the requirements for maintenance and prevailing milk production. The mechanism responsible for some TMR cows putting on excess weight and reducing or ceasing milk production is uncertain, but this observation has important implications for the nutritional management of cows in extended lactation programs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major source of energy during lactation in mammals is provided through the mobilization of blubber fatty acids (FAs). We investigated the extent to which FAs were mobilized to support both maternal metabolic requirements and milk production in the Weddell seal and how this was reflected in the FA composition of the pup’s blubber at the end of lactation (EL). FA composition of postpartum female blubber was similar in the 2 yr of study (2002 and 2003) but differed markedly by EL. Pup blubber FAs (at EL) were also different between years and did not match that of the mother’s milk or blubber. Milk FA composition changed during lactation, which may have been a reflection of an increase in pup energy demands at different stages of development. In addition, there was evidence of feeding by some females during lactation, with higher levels of some FAs in the milk than in the blubber. Our results indicate that differential mobilization of FAs occurred in lactating Weddell seals and that this was related to total body lipid stores at postpartum. Furthermore, growing pups did not store FAs unmodified, providing evidence that selective use does occur and also that using FA composition to elucidate dietary sources may be problematic in growing individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evolved patterns of resource expenditure for reproduction have resulted in a life history continuum across species. A strictly capital-breeding strategy relies extensively on stored energy for reproduction, whereas income breeding uses energy acquired throughout the reproductive period. However, facultative income breeding has been shown in some classically capital-breeding animals, and was originally thought to provide a nutritional refuge for smaller females incapable of securing sufficient reserves during pre-partum foraging. We examined milk composition and milk output for the Weddell seal to determine to what degree lactation was aided by food intake, and what factors contributed to its manifestation. Milk composition was independent of maternal post-partum mass and condition, but did change over lactation. Changes were most likely in response to energetic and nutritional demands of the pup at different stages of development. During early lactation, females fasted and devoted 54.9% of total energy loss to milk production. Later in lactation 30.5% more energy was devoted to milk production and evidence suggested that larger females fed more during lactation than smaller females. It appears that Weddell seals may exhibit a flexible strategy to adjust reproductive investment to local resource levels by taking advantage of periods when prey are occasionally abundant, although it is restricted to larger females possessing the physiological capacity to dive for longer and exploit different resources during lactation. This supports the assumption that although body mass and phylogenetic history explain most of the variation in lactation patterns (20–69%), the remaining variation has likely resulted from physiological adaptations to local environmental conditions. Our study confirms that Weddell seals use a mixed capital–income breeding strategy, and that considerable intraspecific variation exists. Questions remain as to the amount of energy gain derived from the income strategy, and the consequences for pup condition and survival.