7 resultados para Midgut

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential ability to produce cellulase enzymes endogenously was examined in decapods crustaceans including the herbivorous gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes, the amphibious freshwater crab Austrothelphusa transversa, the terrestrial hermit crab, Coenobita variabilis the parastacid crayfish Euastacus, and the crayfish Cherax destructor. The midgut gland of both G. natalis and D. hirtipes contained substantial total cellulase activities and activities of the cellulase enzymes endo-β-1,4-glucanase and β-glucosidase. With the exception of total cellulase and β-glucosidase from D. hirtipes, the enzyme activities within the midgut gland were higher than those within the digestive juice. Hence, the enzyme activities appear to reside predominantly within midgut gland, providing indirect evidence for endogenous synthesis of cellulase enzymes by this tissue. A 900 bp cDNA fragment encoding a portion of the endo-β-1,4-glucanase amino acid sequence was amplified by RT-PCR using RNA isolated from the midgut gland of C. destructor, Euastacus, A. transversa and C. variabilis. This provided direct evidence for the endogenous production of endo-β-1,4-glucanase. The 900 bp fragment was also amplified from genomic DNA isolated from the skeletal muscle of G. natalis and D. hirtipes, clearly indicating that the gene encoding endo-β-1,4-glucanase is also present in these two species. As this group of evolutionary diverse crustacean species possesses and expresses the endo-β-1,4-glucanase gene it is likely that decapod crustaceans generally produce cellulases endogenously and are able to digest cellulose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laminarinase and endo-β-1,4-glucanase were purified and characterised from the midgut gland of the herbivorous land crab Gecarcoidea natalis and the crayfish Cherax destructor. The laminarinase isolated from G. natalis was estimated to have a molecular mass of 41 kDa by SDS-PAGE and 71 kDa by gel filtration chromatography. A similar discrepancy was noted for C. destructor. Possible reasons for this are discussed. Laminarinase (EC 3.2.1.6) from G. natalis had a Vmax of 42.0 µmol reducing sugars produced min–1 mg protein–1, a Km of 0.126% (w/v) and an optimum pH range of 5.5–7, and hydrolysed mainly β-1,3-glycosidic bonds. In addition to the hydrolysis of β-1,3-glycosidic bonds, laminarinase (EC 3.2.1.39) from C. destructor was capable of significant hydrolysis of β-1,4-glycosidic bonds. It had a Vmax of 19.6 µmol reducing sugars produced min–1 mg protein–1, a Km of 0.059% (w/v) and an optimum pH of 5.5. Laminarinase from both species produced glucose and other short oligomers from the hydrolysis of laminarin. Endo-β-1,4-glucanase (EC 3.2.1.4) from G. natalis had a molecular mass of 52 kDa and an optimum pH of 4–7. It mainly hydrolysed β-1,4-glycosidic bonds, but was also capable of significant hydrolysis of β-1,3-glycosidic bonds. Two endo-β-1,4-glucanases, termed 1 and 2, with respective molecular masses of 53±3 and 52 kDa, were purified from C. destructor. Endo-β-1,4-glucanase 1 was only capable of hydrolysing β-1,4-glycosidic bonds and had an optimum pH of 5.5. Endo-β-1,4-glucanases from both species produced some glucose, cellobiose and other short oligomers from the hydrolysis of carboxymethyl cellulose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the insecticide, pyriproxyfen on early ovary synthesis was examined in the Gecarcinid land crab, Gecarcoidea natalis. Crabs were fed a mixture of either leaf litter and bait containing 0.5% (wt/wt) pyriproxyfen (experimental groups), or a mixture of leaf litter and a control bait containing no pyriproxyfen (control groups), at simulated baiting doses of 2 kg ha− 1 and 4 kg ha− 1, during the period in which G. natalis synthesises its ovaries. A third group of crabs were fed ad libitum either the bait containing 0.5% Pypriproxyfen or the control bait. Pyriproxyfen affected early ovary development in G. natalis. The ovaries from crabs in the experimental groups at all baiting levels had a higher total nitrogen content and dry mass than the ovaries from crabs in the control groups. Pyriproxyfen affected the histology of the ovaries. Ovaries from animals in the experimental groups were more mature, containing more previtellogenic and early vitellogenic oocytes, of a larger diameter, than the ovaries from crabs in the control groups. Significant amounts of pyriproxyfen accumulated within the midgut gland and ovary, the hypothesised target tissues, while minor amounts of pyriproxyfen was accumulated in the muscle, a hypothesised non target tissue. Pyriproxyfen may have stimulated early ovary development and induced synthesis of yolk protein by mimicking methyl farnesoate and thus causing endocrine disruption. Given this, pyriproxyfen should not be used to control invasive insects in environments where gecarcinid and other land crab species are present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both Engaeus sericatus and Cherax destructor are omnivorous crayfishes consuming a variety of food items. Materials identified in the faeces of both E. sericatus and C. destructor consisted of mainly plant material with minor amounts of arthropod animals, algae and fungi. The morphology of the gastric mill of C. destructor suggests that it is mainly involved in crushing of food material while the gastric mill of E. sericatus appears to be better suited to cutting of food material. Given this, the gastric mill of E. sericatus may be better able to cut the cellulose and hemicellulose fibres associated with fibrous plant material. In contrast, the gastric mill of C. destructor appears to be more efficient in grinding soft materials such as animal protein and algae. Both species accumulated high amounts of lipids in their midgut glands (about 60% of the dry mass) which were dominated by triacylglycerols (81–82% of total lipids). The dominating fatty acids were 16:0, 16:1(n-7), 18:1(n-9), 18:2(n-6), and 18:3(n-3). The two latter fatty acids can only be synthesised by plants, and are thus indicative of the consumption of terrestrial plants by the crayfishes. The similarity analysis of the fatty acid patterns showed three distinct clusters of plants and each of the crayfish species. The complement of digestive enzymes, proteinases, total cellulase, endo-β-1,4-glucanase, β-glucosidase, laminarinase and xylanase within midgut gland suggests that both C. destructor and E. sericatus are capable of hydrolysing a variety of substrates associated with an omnivorous diet. Higher activities of total cellulase, endo-β-1,4-glucanase and β-glucosidase indicate that E. sericatus is better able to hydrolyse cellulose within plant material than C. destructor. In contrast to E. sericatus, higher total protease and N-acetyl-β-d-glucosaminidase activity in the midgut gland of C. destructor suggests that this species is better able to digest animal materials in the form of arthropods. Differences in total cellulase and gastric mill morphology suggest that E. sericatus is more efficient at digesting plant material than C. destructor. However, the contents of faecal pellets and the fatty acid compositions seem to indicate that both species opportunistically feed on the most abundant and easily accessible food items.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 160 kDa enzyme with β-glucosidase activity was purified from the midgut Gland of the land crab Gecarcoidea natalis. The enzyme was capable of releasing glucose progressively from cellobiose, cellotriose or cellotetraose. Although β-glucosidases (EC 3.2.1.21) have some activity towards substrates longer than cellobiose, the enzyme was classified as a glucohydrolase (EC 3.2.1.74) as it had a preference for larger substrates (cellobiose<cellotriose=cellotetraose). It was able to synthesise some cellotetraose by the transglycosylation of smaller substrates – another common feature of glucohydrolases. The interaction between the glucohydrolase described here and the endo-β-1,4-glucanases described previously for G. natalis provides a complete model for cellulose hydrolysis in crustaceans and possibly in other invertebrates. After mechanical fragmentation by the gastric mill, multiple endo-β-1,4-glucanases would initially cleave β-1,4-glycosidic bonds within native cellulose, releasing small oligomers, including cellobiose, cellotriose and cellotetraose. The glucohydrolase would then attach to these oligomers, progressively releasing glucose. The glucohydrolase might also attach directly to crystalline cellulose to release glucose from free chain ends. This two-enzyme system differs from the traditional model, which suggests that total cellulose hydrolysis requires the presence an endo-β-1,4-glucanse, a cellobiohydrolase and a β-glucosidase

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional cytotoxic chemotherapy is not usually effective in neuroendocrine tumours (NET). Somatostatin analogues (SSA) such as octreotide (Sandostatin; octreotide LAR and lanreotide) are typically used to treat symptoms caused by NET, but not as the primary treatment aiming for an objective response. Recently, results from the PROMID (Placebo-controlled prospective Randomized study on the antiproliferative efficacy of Octreotide LAR in patients with metastatic neuroendocrine MIDgut tumours) trial were published showing that octreotide LAR significantly lengthens the time to tumour progression compared with a placebo in patients with functionally active and inactive metastatic midgut NET. We report a retrospective descriptive analysis of six patients, treated at two Australian institutions, who obtained an objective radiological tumour response on long acting SSA. In this retrospective series of NET, radiological responses were observed using single agent SSA, which was administered mainly for symptom management. This could be due to an antiproliferative and/or antiangiogenic activity of this agent in NET. A response can occur beyond 12 months, which might explain why the response rate is under reported in NET trials. Further investigation in prospective trials is warranted and the possibility for late responses might have implications for trial design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To identify the gene responsible for the production of a β-1,3-glucanase (laminarinase) within crustacea, a glycosyl hydrolase family 16 (GHF16) gene was sequenced from the midgut glands of the gecarcinid land crab, Gecarcoidea natalis and the freshwater crayfish, Cherax destructor. An open reading frame of 1098bp for G. natalis and 1095bp for C. destructor was sequenced from cDNA. For G. natalis and C. destructor respectively, this encoded putative proteins of 365 and 364 amino acids with molecular masses of 41.4 and 41.5kDa. mRNA for an identical GHF16 protein was also expressed in the haemolymph of C. destructor. These putative proteins contained binding and catalytic domains that are characteristic of a β-1,3-glucanase from glycosyl hydrolase family 16. The amino acid sequences of two short 8-9 amino acid residue peptides from a previously purified β-1,3-glucanase from G. natalis matched exactly that of the putative protein sequence. This plus the molecular masses of the putative proteins matching that of the purified proteins strongly suggests that the sequences obtained encode for a catalytically active β-1,3-glucanase. A glycosyl hydrolase family 16 cDNA was also partially sequenced from the midgut glands of other amphibious (Mictyrisplatycheles and Paragrapsus laevis) and terrestrial decapod species (Coenobita rugosus, Coenobita perlatus, Coenobita brevimanus and Birgus latro) to confirm that the gene is widely expressed within this group. There are three possible hypothesised functions and thus evolutionary routes for the β-1,3-glucanase: 1) a digestive enzyme which hydrolyses β-1,3-glucans, 2) an enzyme which cleaves β-1,3-glycosidic bonds within cell walls to release cell contents or 3) an immune protein which can hydrolyse the cell walls of potentially pathogenic micro-organisms.