12 resultados para Microvascular

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: The aetiology of the development of type 2 diabetes remains unresolved. In the present study, we assessed whether an impairment of insulin-mediated microvascular perfusion occurs early in the onset of insulin resistance. Materials and methods: Hooded Wistar rats were fed either a normal diet (ND) or a high-fat diet (HFD) for 4 weeks. Anaesthetized animals were subjected to an isoglycaemic hyperinsulinaemic clamp (3 or 10 mU/min/kg × 2 h), and measurements were made of glucose infusion rate (GIR), hindleg glucose uptake, muscle glucose uptake by 2-deoxy-d-glucose (R′g), glucose appearance (Ra), glucose disappearance (Rd), femoral blood flow (FBF) and hindleg 1-methylxanthine disappearance (1-MXD, an index of microvascular perfusion). Results: Compared with ND-fed animal, HFD feeding led to a mild increase in fasting plasma glucose and plasma insulin, without an increase in total body weight. During the clamps, HFD rats showed an impairment of insulin-mediated action on GIR, hindleg glucose uptake, R′g, Ra, Rd and FBF, with a greater loss of insulin responsiveness at 3 mU/min/kg than at 10 mU/min/kg. The HFD also impaired insulin-mediated microvascular perfusion as assessed by 1-MXD. Interestingly, 1-MXD was the only measurement that remained unresponsive to the higher dose of 10 mU/min/kg insulin. Conclusions: We conclude that the early stage of insulin resistance is characterized by an impairment of the insulin-mediated microvascular responses in skeletal muscle. This is likely to cause greater whole body insulin resistance by limiting the delivery of hormones and nutrients to muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims: Individuals who reach end-stage kidney disease (CKD5) have a high risk of vascular events that persists even after renal transplantation. This study compared the prevalence and severity of microvascular disease in transplant recipients and patients with CKD5. Methods: Individuals with a renal transplant or CKD5 were recruited consecutively from renal clinics, and underwent bilateral retinal photography (Canon CR5-45, Canon). Their retinal images were deidentified and reviewed for hypertensive/microvascular signs by an ophthalmologist and a trained grader (Wong and Mitchell classification), and for vessel caliber at a grading centre using a computer-assisted method and Knudtson’s modification of the Parr-Hubbard formula. Results: Ninety-two transplant recipients (median duration 6.4 years, range 0.8 to 28.8) and 70 subjects with CKD5 were studied. Transplant recipients were younger (p<0.001), with a higher eGFR (p< 0.001), but were just as likely to have a moderate-severe hypertensive/microvascular retinopathy (46/92, 50%) as subjects with CKD5 (38/70, 54%; OR 0.84, CI 0.45 to 1.57, p=0.64), and had similar mean arteriole and venular calibres (135.1 ± 7.5 μm and 137.9 ± 14.9 μm, p=0.12; and 199.1 ± 17.8 μm and 202.4 ± 27.8 μm, p=0.36, respectively). Arteriole and venular caliber were not different in nine patients examined before and after transplantation (p=0.62 and p=0.11, respectively). Conclusions: Hypertensive/microvascular disease occurred just as often and was generally as severe in transplant recipients and subjects with CKD5. Microvascular disease potentially contributes to increased cardiac events post- transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. Glabridin is a major active constituent of Glycyrrhiza glabra which is commonly used in the treatment of cardiovascular and central nervous system (CNS) diseases. Recently, we have found that glabridin is a substrate of P-glycoprotein (PgP/MDR1). This study aimed to investigate the role of PgP in glabridin penetration across the blood–brain barrier (BBB) using several in vitro and in vivo models.
Materials and Methods. Cultured primary rat brain microvascular endothelial cells (RBMVECs) were used in the uptake, efflux and transcellular transport studies. A rat bilateral in situ brain perfusion model was used to investigate the brain distribution of glabridin. The brain and tissue distribution of glabridin in rats with or without coadministered verapamil or quinidine were examined with correction for the tissue residual blood. In addition, the brain distribution of glabridin in mdr1a(-/-) mice was compared with the wild-type mice. Glabridin in various biological matrices was determined by a validated liquid chromatography mass spectrometric method.
Results. The uptake and efflux of glabridin in cultured RBMVECs were ATP-dependent and significantly altered in the presence of a PgP or multi-drug resistance protein (Mrp1/2) inhibitor (e.g. verapamil or MK-571). A polarized transport of glabridin was found in RBMVEC monolayers with
facilitated efflux from the abluminal (BL) to luminal (AP) side. Addition of a PgP or Mrp1/2 inhibitor in both luminal and abluminal sides attenuated the polarized transport across RBMVECs. In a bilateral in situ brain perfusion model, the uptake of glabridin into the cerebrum increased from 0.42 T 0.09% at 1 min to 9.27 T 1.69% (ml/100 g tissue) at 30 min and was significantly greater than that for sucrose. Coperfusion of a PgP or Mrp1/2 inhibitor significantly increased the brain distribution of glabridin by 33.6j142.9%. The rat brain levels of glabridin were only about 27% of plasma levels when corrected by tissue residual blood and it was increased to up to 44% when verapamil or quinidine was coadministered. The area under the brain concentration-time curve (AUC) of glabridin in mdr1a(-/-) mice was 6.0-fold higher than the wild-type mice.
Conclusions. These findings indicate that PgP limits the brain penetration of glabridin through the BBB and PgP may cause drug resistance to glabridin (licorice) therapy for CNS diseases and potential drugglabridin interactions. However, further studies are needed to explore the role of other drug transporters (e.g. Mrp1-4) in restricting the brain penetration of glabridin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cryptotanshinone (CTS), a major constituent from the roots of Salvia miltiorrhiza (Danshen), is widely used in the treatment of coronary heart disease, stroke and less commonly Alzheimer's disease. Our recent study indicates that CTS is a substrate for Pglycoprotein (PgP/MDR1/ABCB1). This study has investigated the nature of the brain distribution of CTS across the brain-blood barrier (BBB) using several in vitro and in vivo rodent models. A polarized transport of CTS was found in rat primary microvascular endothelial cell (RBMVEC) monolayers, with facilitated efflux from the abluminal side to luminal side. Addition of a PgP (e.g. verapamil and quinidine) or multi-drug resistance protein 1/2 (MRP1/2) inhibitor (e.g. probenecid and MK-571) in both luminal and abluminal sides attenuated the polarized transport. In a bilateral in situ brain perfusion model, the uptake of CTS into the cerebrum increased from 0.52 ± 0.1% at 1 min to 11.13 ± 2.36 ml/100 g tissue at 30 min and was significantly greater than that of sucrose. Co-perfusion of a PgP/MDR1 (e.g. verapamil) or MRP1/2 inhibitor (e.g. probenecid) significantly increased the brain distribution of CTS by 35.1-163.6%. The brain levels of CTS were only about 21% of those in plasma, and were significantly increased when coadministered with verapamil or probenecid in rats. The brain levels of CTS in rats subjected to middle cerebral artery occlusion and rats treated with quinolinic acid (a neurotoxin) were about 2- to 2.5-fold higher than the control rats. Moreover, the brain levels in mdr1a(-/-) and mrp1(-/-) mice were 10.9- and 1.5-fold higher than those in the wild-type mice, respectively. Taken collectively, these findings indicate that PgP and Mrp1 limit the brain penetration of CTS in rodents, suggesting a possible role of PgP and MRP1 in limiting the brain penetration of CTS in patients and causing drug resistance to Danshen therapy and interactions with conventional drugs that are substrates of PgP and MRP1. Further studies are needed to explore the role of other drug transporters in restricting the brain penetration of CTS and the clinical relevance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular perfusion and muscle glucose uptake. Therefore, we studied the effects of the pan-cGMP PDE inhibitor zaprinast on the metabolic and vascular actions of insulin in muscle. Hyperinsulinemic euglycemic clamps (3 mU·min−1·kg−1) were performed in anesthetized rats and changes in microvascular blood flow assessed from rates of 1-methylxanthine metabolism across the muscle bed by capillary xanthine oxidase in response to insulin and zaprinast. We also characterized cGMP PDE isoform expression in muscle by real-time PCR and immunostaining of frozen muscle sections. Zaprinast enhanced insulin-mediated microvascular perfusion by 29% and muscle glucose uptake by 89%, while whole body glucose infusion rate during insulin infusion was increased by 33% at 2 h. PDE2, -9, and -10 were the major isoforms expressed at the mRNA level in muscle, while PDE1B, -9A, -10A, and -11A proteins were expressed in blood vessels. Acute administration of the cGMP PDE inhibitor zaprinast enhances muscle microvascular blood flow and glucose uptake response to insulin. The expression of a number of cGMP PDE isoforms in skeletal muscle suggests that targeting specific cGMP PDE isoforms may provide a promising avenue for development of a novel class of therapeutics for enhancing muscle insulin sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background:
The use of pharmacological agents has been shown to slow down the progression of microvascular and 
macrovascular complications. Most clinical trials address one pharmacological intervention at a time. To date, only a few studies explored multi-factorial pharmacological interventions in T2DM individuals for preventing CVD related complications. Given the current therapeutic inertia in pharmacological management of CVD risk factors, it is important to establish the benefits of a more holistic approach. Therefore, the aim of this review is to assess the efficacy of multiple pharmacological interventions for cardiovascular diseases (CVD) risk factors with or without conventional care in reducing all cause mortality, CVD mortality, stroke and cardiovascular events among adults with type 2 diabetes. Current evidence fails to support the benefit of multiple pharmacological interventions on all cause mortality and death from cardiovascular causes. However, beneficial effects were seen on the reduction of the overall number of cardiovascular events and there were promising trends for secondary outcomes such as stroke, myocardial infarction, revascularisation and amputation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: 
To estimate the cost-effectiveness of training in flexible intensive insulin therapy [as provided in the Dose Adjustment for Normal Eating (DAFNE) structured education programme] compared with no training for adults with Type 1 diabetes mellitus in the UK using the Sheffield Type 1 Diabetes Policy Model.

METHODS: 
The Sheffield Type 1 Diabetes Policy Model was used to simulate the development of long-term microvascular and macrovascular diabetes-related complications and the occurrence of diabetes-related adverse events in 5000 adults with Type 1 diabetes. Total costs and quality-adjusted life years were estimated from a National Health Service perspective over a lifetime horizon, discounted at a rate of 3.5%. The treatment effectiveness of DAFNE was modelled as a reduction in HbA1c that affected the risk of developing long-term diabetes-related complications. Probabilistic and structural sensitivity analyses were conducted.

RESULTS:
DAFNE resulted in greater life expectancy and reduced incidence of some diabetes-related complications compared with no DAFNE. DAFNE was found to generate an average of 0.0294 additional quality-adjusted life years for an additional cost of £426 per patient, leading to an incremental cost-effectiveness ratio of £14 400 compared with no DAFNE. There was a 54% probability that DAFNE would be cost-effective at a willingness-to-pay threshold of £20 000 per quality-adjusted life year.

CONCLUSIONS: 
The results of this study suggest that DAFNE is a cost-effective structured education programme for people with Type 1 diabetes and support its provision by the National Health Service in the UK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hypoglycemia-induced fall is common in older persons with diabetes. The etiology of falls in this population is usually multifactorial, and includes microvascular and macrovascular complications and age-related comorbidities, with hypoglycemia being one of the major precipitating causes. In this review, we systematically searched the literature that was available up to March 31, 2014 from MEDLINE/PubMed, Embase, and Google Scholar using the following terms: hypoglycemia; insulin; diabetic complications; and falls in elderly. Hypoglycemia, defined as blood glucose <4.0 mmol/L (70 mg/dL) requiring external assistance, occurs in one-third of elderly diabetics on glucose-lowering therapies. It represents a major barrier to the treatment of diabetes, particularly in the elderly population. Patients who experience hypoglycemia are at a high risk for adverse outcomes, including falls leading to bone fracture, seizures, cognitive dysfunction, and prolonged hospital stays. An increase in mortality has been observed in patients who experience any one of these events. Paradoxically, rational insulin therapy, dosed according to a patient's clinical status and the results of home blood glucose monitoring, so as to achieve and maintain recommended glycemic goals, can be an effective method for the prevention of hypoglycemia and falls in the elderly. Contingencies, such as clinician-directed hypoglycemia treatment protocols that guide the immediate treatment of hypoglycemia, help to limit both the duration and severity of the event. Older diabetic patients with or without underlying renal insufficiency or other severe illnesses represent groups that are at high risk for hypoglycemia-induced falls and, therefore, require lower insulin dosages. In this review, the risk factors of falls associated with hypoglycemia in elderly diabetics were highlighted and management plans were suggested. A target hemoglobin A1c level between 7% and 8% seems to be more appropriate for this population. In addition, the first-choice drugs should have good safety profiles and have the lowest probability of causing hypoglycemia - such as metformin (in the absence of significant renal impairment) and incretin enhancers - while other therapies that may cause more frequent hypoglycemia should be avoided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Key points: Skeletal muscle capillary density and vasoreactivity are reduced in obesity, due to reduced nitric oxide bioavailability. Sprint interval training (SIT) has been proposed as a time efficient alternative to moderate-intensity continuous training (MICT), but its effect on the skeletal muscle microvasculature has not been studied in obese individuals. We observed that SIT and MICT led to equal increases in capillarisation and endothelial eNOS content, while reducing endothelial NOX2 content in microvessels of young obese men. We conclude that SIT is equally effective at improving skeletal muscle capillarisation and endothelial enzyme balance, while being a time efficient alternative to traditional MICT. Sprint interval training (SIT) has been proposed as a time efficient alternative to moderate-intensity continuous training (MICT), leading to similar improvements in skeletal muscle capillary density and microvascular function in young healthy humans. In this study we made the first comparisons of the muscle microvascular response to SIT and MICT in an obese population. Sixteen young obese men (age 25 ± 1 years, BMI 34.8 ± 0.9 kg m-2) were randomly assigned to 4 weeks of MICT (40-60 min cycling at ∼65% V˙O2 peak , 5 times per week) or constant load SIT (4-7 constant workload intervals of 200% Wmax 3 times per week). Muscle biopsies were taken before and after training from the m. vastus lateralis to measure muscle microvascular endothelial eNOS content, eNOS serine1177 phosphorylation, NOX2 content and capillarisation using quantitative immunofluorescence microscopy. Maximal aerobic capacity (V˙O2 peak ), whole body insulin sensitivity and arterial stiffness were also assessed. SIT and MICT increased skeletal muscle microvascular eNOS content and eNOS ser1177 phosphorylation in terminal arterioles and capillaries (P < 0.05), but the latter effect was eliminated when normalised to eNOS content (P = 0.217). SIT and MICT also reduced microvascular endothelial NOX2 content (P < 0.05) and both increased capillary density and capillary-fibre perimeter exchange index (P < 0.05). In parallel, SIT and MICT increased V˙O2 peak (P < 0.05) and whole body insulin sensitivity (P < 0.05), and reduced central artery stiffness (P < 0.05). As no significant differences were observed between SIT and MICT it is concluded that SIT is a time efficient alternative to MICT to improve aerobic capacity, insulin sensitivity and muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in young obese men.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Terlipressin improves renal function in some patients with type-1 hepato-renal syndrome (HRS). Renal contrast-enhanced ultrasound (CEUS), a novel imaging modality, may help to predict terlipressin responsiveness. OBJECTIVES: We used CEUS to estimate the effect of terlipressin on the renal cortical microcirculation in type-1 HRS. METHODS: We performed renal CEUS scans with destruction-replenishment sequences using Sonovue(®) (Bracco, Milano Italy) as a contrast agent at baseline and after the intravenous administration of 1 mg of terlipressin, in four patients with type-1 HRS. We analyzed video sequences offline using dedicated software. We derived a perfusion index (PI) at each time point for each patient. RESULTS: Patients 1 and 2 had severe presentation and were admitted to the intensive care unit. Both showed a marked increase in PI (+216% and + 567% of baseline) in response to terlipressin. Patients 3 and 4 had less severe presentations and had a decrease in PI (-53% and -20% of baseline) in response to terlipressin. Patients 1, 2, and 4, but not patient 3, responded to terlipressin therapy with a decrease in serum creatinine to <150 µmol/L. CONCLUSIONS: CEUS detected changes in renal cortical microcirculation in response to terlipressin and demonstrated heterogeneous microvascular responses to terlipressin. These initial proof-of-concept findings justify future investigations.