116 resultados para Mg-Zr-Ca alloy

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable magnesium-zirconia-calcium (Mg-Zr-Ca) alloy implants were coated with Collagen type-I (Coll-I) and assessed for their rate and efficacy of bone mineralization and implant stabilization. The phases, microstructure and mechanical properties of these alloys were analyzed using X-ray diffraction (XRD), optical microscopy and compression test, respectively, and the corrosion behavior was established by their hydrogen production rate in simulated body fluid (SBF). Coll-I extracted from rat tail, and characterized using fourier transform infrared (FT-IR) spectroscopy, was used for dip-coating the Mg-based alloys. The coated alloys were implanted into the femur bones of male New Zealand white rabbits. In vivo bone formation around the implants was quantified by measuring the bone mineral content/density (BMC/BMD) using dual-energy X-ray absorptiometry (DXA). Osseointegration of the implant and new bone mineralization was visualized by histological and immunohistochemical analysis. Upon surface coating with Coll-I, these alloys demonstrated high surface energy showing enhanced performance as an implant material that is suitable for rapid and efficient new bone tissue induction with optimal mineral content and cellular properties. The results demonstrate that Coll-I coated Mg-Zr-Ca alloys have a tendency to form superior trabecular bone structure with better osteoinduction around the implants and higher implant secondary stabilization, through the phenomenon of contact osteogenesis, compared to the control and uncoated ones in shorter periods of implantation. Hence, Coll-I surface coating of Mg-Zr-Ca alloys is a promising method for expediting new bone formation in vivo and enhancing osseointegration in load bearing implant applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigated the microstructural characterization and mechanical properties of Mg-Zr-Ca alloys prepared by hot-extrusion for potential use in biomedical applications. Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9%), Ca (99.9%), and master Mg-33% Zr alloy (mass%). The microstructural characterization of the hot-extruded Mg-Zr-Ca alloys was examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the hot-extruded Mg-Zr-Ca alloys with 1 mass% Ca are composed of one single phase and those alloys with 2 mass% Ca consist of both Mg2Ca and α phase. The hot-extruded Mg-Zr-Ca alloys exhibit equiaxed granular microstructures and the hot-extrusion process can effectively increase both the tensile strength and ductility of Mg-Zr-Ca alloys. The hot-extruded Mg-1Zr-1Ca alloy (mass%) exhibits the highest strength and best ductility among all the alloys, and has much higher strength than the human bone, suggesting that it has a great potential to be a good candidate for biomedical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg–Zr–Ca alloys were developed for new biodegradable bone implant materials. The microstructure and mechanical property of the Mg–xZr–yCa [x=0·5, 1·0% and y=1·0, 2·0% (wt-% hereafter)] alloys were characterised by optical microscopy, compressive and hardness tests. The in vitro cytotoxicity of the alloys was assessed using osteoblast-like SaOS2 cells. The corrosion behaviour of these alloys was evaluated by soaking the alloys in simulated body fluid (SBF) and modified minimum essential medium (MMEM). Results indicated that the mechanical properties of the Mg–Zr–Ca are in the range of the mechanical properties of natural bone. The corrosion rate and biocompatibility decreases with the increase in the Ca content in the Mg–Zr–Ca alloys. The solutions of SBF and MMEM with the immersion of the Mg–Zr–Ca alloys show strong alkalisation. The Zr addition to the Mg–Zr–Ca alloys leads to an increase in the corrosion resistance, compressive strength and the ductility of the alloys, and a decrease in the elastic modulus of the Mg–Zr–Ca alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigated the microstructures and compressive properties of hot-rolled Mg-Zr-Ca alloys for biomedical applications. The microstructures of the Mg-Zr-Ca alloys were examined by X-ray diffraction analysis and optical microscopy, and the compressive properties were determined from compressive tests. The experimental results indicate that the hot-rolled Mg-Zr-Ca alloys with 1% Ca are composed of one single α phase and those alloys with 2% Ca consist of both Mg2Ca and α phase. The hot-rolled Mg-Zr-Ca alloys exhibit typical elongated microstructures with obvious fibrous stripe, and have much higher compressive strength and lower compressive modulus than pure Mg. All the studied alloys have much higher compressive yield strength than the human bone (90~140 MPa) and comparable modulus with the human bone, suggesting that they have a great potential to be good candidates for biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructures, mechanical properties, corrosion behaviour and biocompatibility of the Mg-Zr-Ca alloys have been investigated for potential use in orthopaedic applications. The microstructures of the alloys were examined using X-ray diffraction analysis, optical microscopy and scanning electron microscopy. The mechanical properties of Mg-Zr-Ca alloys were determined from compressive tests. The corrosion behaviour has been investigated using an immersion test and electrochemical measurement. The biocompatibility was evaluated by cell growth factor using osteoblast-like SaOS2 cell. The experimental results indicate that the hot-rolled Mg-Zr-Ca alloys exhibit much finer microstructures than the as-cast Mg-Zr-Ca alloys which show coarse microstructures. The compressive strength of the hot-rolled alloys is much higher than that of the as-cast alloys and the human bone, which would offer appropriate mechanical properties for orthopaedic applications. The corrosion resistance of the alloys can be enhanced significantly by hot-rolling process. Hot-rolled Mg-0.5Zr-1Ca alloy (wt %) exhibits the lowest corrosion rate among all alloys studied in this paper. The hot-rolled Mg-0.5Zr-1Ca and Mg-1Zr-1Ca alloys exhibit better biocompatibility than other studied alloys and possess advanced mechanical properties, corrosion resistance and biocompatibility, suggesting that they have a great potential to be good candidates for orthopaedic applications. © 2012 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel Mg–Zr–Sr alloys have recently been developed for use as biodegradable implant materials. The Mg–Zr–Sr alloys were prepared by diluting Mg–Zr and Mg–Sr master alloys with pure Mg. The impact of Zr and Sr on the mechanical and biological properties has been thoroughly examined. The microstructures and mechanical properties of the alloys were characterized using optical microscopy, X-ray diffraction and compressive tests. The corrosion resistance was evaluated by electrochemical analysis and hydrogen evolution measurement. The in vitro biocompatibility was assessed using osteoblast-like SaOS2 cells and MTS and haemolysis tests. In vivo bone formation and biodegradability were studied in a rabbit model. The results indicated that both Zr and Sr are excellent candidates for Mg alloying elements in manufacturing biodegradable Mg alloy implants. Zr addition refined the grain size, improved the ductility, smoothed the grain boundaries and enhanced the corrosion resistance of Mg alloys. Sr addition led to an increase in compressive strength, better in vitro biocompatibility, and significantly higher bone formation in vivo. This study demonstrated that Mg–xZr–ySr alloys with x and y ⩽5 wt.% would make excellent biodegradable implant materials for load-bearing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our previous studies have demonstrated that Mg-Zr-Sr alloys can be anticipated as excellent biodegradable implant materials for load-bearing applications. In general, rare earth elements (REEs) are widely used in magnesium (Mg) alloys with the aim of enhancing the mechanical properties of Mg-based alloys. In this study, the REE holmium (Ho) was added to an Mg-1Zr-2Sr alloy at different concentrations of Mg1Zr2SrxHo alloys (x = 0, 1, 3, 5 wt. %) and the microstructure, mechanical properties, degradation behaviour and biocompatibility of the alloys were systematically investigated. The results indicate that the addition of Ho to Mg1Zr2Sr led to the formation of the intermetallic phases MgHo3, Mg2Ho and Mg17Sr2 which resulted in enhanced mechanical strength and decreased degradation rates of the Mg-Zr-Sr-Ho alloys. Furthermore, Ho addition (≤5 wt. %) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho alloys. The in vitro biodegradation and the biocompatibility of the Mg-Zr-Sr-Ho alloys were both influenced by the Ho concentration in the Mg alloys; Mg1Zr2Sr3Ho exhibited lower degradation rates than Mg1Zr2Sr and displayed the best biocompatibility compared with the other alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characteristics of the “contraction” twins, formed close to the fracture surface in Mg–3Al–1Zn alloy deformed in tension approximately perpendicular to the grain c-axes, are investigated using transmission electron microscopy. The grain c-axis contractions were largely accommodated by {1011}-{1012} source double-twins in a variant characterized by 38° ⟨1210⟩ source twin/matrix misorientation in conjunction with dislocation slip. A possible interpretation of the observed preference for this variant formation is given and some crystal plasticity modelling is performed to elucidate the matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes tensile properties of a peak-aged Mg-4Y·3RE alloy at room temperature to 823 K with 10-5 - 10-1 s-1. The Mg alloy exhibited high strength (> 250 MPa) at room temperature to 473 K. However. the strength rapidly decreased at 573 K. It is suggested that a large decrease in strength at 573 K is attributed to grain boundary sliding. Also, elongation increased rapidly at 723 - 823 K. This is likely to arise from the relatively high strain rate sensitivity of about 0.3 due to the glide-controlled dislocation creep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A potential severe plastic deformation process known as axi-symmetrical forward spiral extrusion (AFSE) has been studied numerically and experimentally. The process is based on the extrusion of cylindrical samples through a die with engraved spiral grooves in a near zero shape change manner. The process was simulated using a three dimensional finite element (FE) model that has been developed using commercial software, ABAQUS. In order to verify the finite element results, hot rolled and annealed samples of the alloy were experimentally processed by AFSE. The required extrusion forces during the process were estimated using the FE model and compared with the experimental values. The reasonable agreement between the FE results and experimental data verified the accuracy of the FE model. The numerical results indicate the linear strain distribution in the AFSE sample is only valid for a core concentric while the strain distribution in the vicinity of the grooves is non axi-symmetric. The FE simulation results from this research allows a better understanding of AFSE kinematics especially near the grooves, the required extrusion force and the resultant induced strain distribution in the sample. To compare the mechanical properties of the Mg-1.75Mn alloy before and after the process, a micro shear punch test was used. The tests were performed on samples undergoing one and four passes of AFSE. After four passes of AFSE, it was observed that the average shear strength of the alloy has improved by about 21%. The developedfinite element model enables tool design and material flow simulation during the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to assess a number of coatings developed for Mg for biomedical applications. The Mg substrates were high-purity (HP) Mg and ME10, an alloy recently developed for improved extrudability. The research utilized the new fishing-line specimen configuration to allow direct comparison to our recent in vivo and in vitro measurements. The in vitro measurements were immersion tests of fishing-line specimens immersed in Nor's solution at 37 °C. Tests of substantial duration are needed because the corrosion rates of uncoated samples are low. Nor's solution is the designation given to Hank's solution through which CO2 is bubbled at a partial pressure of 0.009 atm. In this solution, pH is maintained constant by the interaction of CO2 and the bicarbonate ions in the solution. This is the same buffer as that which maintains the pH of blood. Coatings examined were: (i) an anodization using a bio-friendly alkaline electrolyte consisting of phosphate, borate, and metasilicate, (ii) octyltrimethoxysilane (OSi), (iii) 1,2-bis[triethoxysilyl]ethane (BTSE), (iv) anodization+OSi, and (v) anodization + BTSE. The performance of coated samples was comparable to or better than that of the uncoated samples, and there was a substantially better performance for the ME10 samples after anodization+OSi. Reasons for the various performances are discussed.