60 resultados para Metals and alloys

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An assessment of hydrocarbon and metal/metalloids (arsenic, cadmium, copper, lead, mercury, selenium, zinc) contamination in sediments from Lake Mulwala, Australia, was undertaken. The objectives of the study were: (i) to determine the extent of contamination in the lake sediments, compared to Australian and international sediment quality guidelines, and (ii) to attempt to identify the contaminant sources to the lake. With the exception of a few samples containing elevated levels of arsenic and/or mercury, the levels of all contaminants in the sediment samples taken from the lake were below the 'lower trigger' of the Australian Sediment Quality Guidelines that would warrant further investigation. High molecular weight hydrocarbons (up to 700 mg kg−1) were found in most sediment samples. Non-metric statistical analysis indicated that the contaminant distribution was different in different parts of the lake, with the lowest concentrations generally found at the influent to the lake. No definitive source(s) of contamination could be identified for either metalloids or hydrocarbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous titanium with a porosity of 75% was fabricated by space-holder sintering through powder metallurgy. The effect of the alkali and heat treatment on the strength of the porous titanium was investigated. Results indicated that the alkali and heat treatment led to a significant decrease in the strength of the porous titanium, whichwas causedby the degradation due to corrosion of the struts of the porous titanium with a layer of the reaction products, grain pullout and micro-cracks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This present work examines the load carrying capacity, energy absorption and fracture characteristics of wrought magnesium and aluminium alloy tubes in three-point bending. Magnesium alloy AZ31, and aluminium alloys 6063 and 7075, were extruded into cylindrical tubes of both equivalent thickness and mass. A strong thickness effect was present meaning that the AZ31 tube had significantly higher load and energy absorption performance than an equivalent mass 6063 tube, albeit not as high as the 7075 tube. Hinge formation and maximum load was delayed for the magnesium alloy, meaning that a high energy absorption rate persisted to higher deformation displacements than the aluminium alloys. It was also found that fracture during deformation was dependent on the indenter diameter, tube thickness and lower support separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research has developed an improved understanding of the structure-property relationships, fabrication technology and deformation mechanism of light bulk ultrafine grained materials and metallic multilayered structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerium diphenyl phosphate (Ce(dpp)3) has previously been shown to be a strong corrosion inhibitor for aluminium-copper magnesium alloy AA2024-T3 and AA7075 in chloride solutions. Surface characterisation including SEM and ToF-SIMS coupled with electrochemical impedance spectroscopy (EIS) measurements are used to propose a mechanism of corrosion inhibition which appears to involve the formation of a complex oxide film of aluminium and cerium also incorporating the organophosphate component. The formation of a thin complex film consisting of hydrolysis products of the Ce(dpp)3 compound and aluminium oxide is proposed to lead to the observed inhibition. SEM analysis shows that some intermetallics favour the creation of thicker deposits predominantly containing cerium oxide compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mass transfer coefficient is an important kinetic factor to control the thermo-chemical treatment processes of metals and alloys. More importantly, the mass transfer coefficient is different at different surface positions of a metallic part treated, which depends on the dynamic characteristics of the atmosphere close to the treated surface. Understanding the local mass transfer coefficient would be significant to approach the expected physical and mechanical properties of treated surfaces. In this paper, a reverse method was proposed to measure the mass transfer coefficient at component surface and the diffusivity in metal during heat treatment. The methodology of the reverses method and the optimal parame-ters are discussed in some detail. This method was successfully used to determine the car-bon transfer coefficient at the surface of a part in a carburizing furnace and carbon diffusiv-ity from the carbon distribution within the diffusion layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent environmental pollutants, including heavy metals and persistent organic pollutants (POPs), have a ubiquitous presence. Many of these pollutants affect neurobiological processes, either accidentally or by design. The aim of this study was to explore the associations between assayed measures of POPs and heavy metals and depressive symptoms. We hypothesised that higher levels of pollutants and metals would be associated with depressive symptoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2014 The Textile Institute. This study intends to enhance the functionality of titanium dioxide (TiO2) nanoparticles applied to wool fabrics under visible light. Herein, TiO2, TiO2/SiO2, TiO2/Metal, and TiO2/Metal/SiO2 nanocomposite sols were synthesized and applied to wool fabrics through a low-temperature sol–gel method. The impacts of three types of noble metals, namely gold (Au), platinum (Pt), and silver (Ag), on the photoefficiency of TiO2 and TiO2/SiO2 under visible light were studied. Different molar ratios of Metal toTiO2 (0.01, 0.1, 0.5, and 1%) were employed in synthesizing the sols. Photocatalytic efficiency of fabrics was analyzed through monitoring the removal of red wine stain and degradation of methylene blue under simulated sunlight and visible light, respectively. Also, the antimicrobial activity against Escherichia coli (E. coli) bacterium and the mechanical properties of fabrics were investigated. Through applying binary and ternary nanocomposite sols to fabrics, an enhanced visible-light-induced self-cleaning property was imparted to wool fabrics. It was concluded that the presence of silica and optimized amount of noble metals had a synergistic impact on boosting the photocatalytic and antimicrobial activities of coated samples. The fabrics were further characterized using attenuated total reflectance, energy-dispersive X-ray spectrometry, and scanning electron microscopy images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis developed a two-step hydrothermal treatment to modify titanium materials,which is very useful for improving the osteointegration of titanium materials. The cellular responses of SaOS2 cells to seventeen element discs were assessed across the different elements. The cell responses to different elemental metals showed that using appropriate concentrations of these elements are critical for designing good Ti-based biomaterials for implants due to the dose-dependent cytotoxicity of each element.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While advanced high strength steels (AHSS) have numerous advantages for the automotive industry, they can be susceptible to interfacial fracture when spot-welded. In this study, the susceptibility of interfacial fracture to spot-weld microstructure and hardness is examined, as well as the corresponding relationships between fatigue, overload performance, and interfacial fracture for a TRIP (transformation induced plasticity) steel. Simple post-weld heat-treatments were used to alter the weld microstructure. The effect on interfacial fracture of diluting the weld pool by welding the TRIP material to non-TRIP steel was examined, along with the effect of altering the base material microstructure. Results show that weld hardness is not a good indicator of either the susceptibility to interfacial fracture, or the strength of the joint, and that interfacial fracture does not necessarily lead to a decrease in strength compared to conventional weld-failure mechanisms, i.e. button pullout. It was also found that while interfacial fracture does affect low cycle to failure behavior, there was no effect on high cycle fatigue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The indentation slope curve from a spherical indentation on elastic-plastic materials is examined. By comparing it with that of an linear elastic material of the same elastic properties, we found that the start point of plastic yielding for an elastic-plastic material can be easily located from the indentation slope curve. Based on this analysis, a simple but effective method is proposed to measure the plastic yield stress of very small samples from a spherical nano-indentation slope curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinational loading-unloading rate effects were studied on the behavior of NiTi shape memory alloys (SMAs) under nanoindentation loads. While combinational loading rates showed negligible effects on the performance of NiTi SMAs, the combinational unloading rates did show significant effects on hysteresis energy. The heating-cooling phenomenon during the loading stage and the sole cooling during the unloading stage explain the effects. This study elucidates the nature of thermomechanical SMAs' behaviors during complex compressive loadings with the presence of solid-state phase transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of austenite grain size on the kinetics of the isothermal bainitic transformation in a high-carbon super-bainitic steel was investigated. Experimental results showed that the transformation of super bainite was accelerated by a coarse austenite grain size. This is because while coarse austenite grains provide less nucleation sites, it is beneficial for bainite sheaf growth. Meanwhile, there is a critical austenite grain size below which there is a distinct grain size effect and above which it is not evident. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whilst ionic liquids (IL) have been shown to inhibit corrosion on some reactive metals and alloys by forming a surface film, e.g. Li and Mg, understanding of the interaction between ionic liquids and aluminium is lacking. This research study investigated the viability of film formation on AA5083 Aluminium Alloy by electrochemical treatments in the trihexyl(tetradecyl)phosphonium diphenylphosphate ([P6,6,6,14][dpp]) IL. Two-step anodic treatments were performed on AA5083 in the IL, followed by a comparison of the corrosion behaviour of the IL-treated samples with that of a control. It has been revealed that the two-step IL-treatment led to reduced current densities on AA5083 under cyclic voltammetry scan in the IL before and after the IL-treatment. Lower corrosion rates have been shown on all samples treated in IL at room temperature. Surface characterisation showed a non-uniform porous film on the 50°C IL-treated sample with a film thickness ranging between 37nm and 155nm. The IL-film enhanced the corrosion resistance of AA5083 by protecting the Al-matrix and Fe-rich intermetallic particles (IMPs). Although findings of this study suggest similar IL-film formation as that on Li and Mg, more research needs to be conducted to optimise the electrochemical treatment conditions and ultimately to develop a robust IL-film formation procedure for corrosion protection.