3 resultados para Melt processing

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon black (CB) fillers were used to study the feasibility of achieving multiple percolation using an immiscible (polar) polymer blend matrix. By tailoring the morphology of the insulating dual phase matrix it has been shown that the percolation threshold (Фc) can be reduced over single-phase matrices. Cocontinuity in the polymer matrix is important in reducing Фc by either preferentially isolating the conducting filler at the interface of the two phases or within one particular continuous phase of the matrix thereby forming a continuous conducting network within a continuous network (multiple percolation). Actual melt processing time has been found to influence the dispersion of the fillers and hence Фc. Polarity of the matrix as well as the processing method has also been found to influence the dispersion of the filler within the host polymer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polypropylene (PP) and polystyrene (PS) blends were prepared by melt processing in a haake at 180 °C. PP/PS blends are immiscible and the blend morphologies were characterized by scanning electron microscopy. The viscoelastic properties were characterized using dynamic mechanical analysis (DMA) with reference to blend ratio. The blend morphologies such as matrix droplet and phase inverted morphologies were observed. The storage modulus of the blends increased with increase in PS content and the value was maximum for neat PS. DMA showed changes in the polystyrene glass transition temperatures (Tg) over the entire composition range. There was a sharp increase in the Tg of PS with increasing PP content in the blend and a 12 °C elevation in Tg was observed. The increase in Tg was explained by proposing a new model based on the physical interaction between the blend components. It is assumed that the different effects by the PP phase resulted in the formation of constrained PS chains leading to high Tg values. The addition of PP-g-MAH has a positive effect on the morphology, increases the storage modulus, and decreases the Tg till 80/20 blends. However, for PP/PS blends with higher concentrations of PS, the PP-g-MAH has little effect or adverse effect on the morphology, and storage modulus, but decreases the Tg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Equal channel angular pressing (ECAP) is a well-established thermo-mechanical processing technique, which could induce the c-axis texture of Nd2Fe14B in a melt-spun Nd13.5Fe73.8Co6.7B5.6Ga0.4 alloy. However, the effects of ECAP processing parameters, such as temperature, back pressure (BP), and multiple-pass ECAP routes, remain unknown for this alloy. In this paper, we have investigated the effects of these processing parameters on the c-axis texture formation. It is found by X-ray diffraction macrotexture analysis that the maximum intensity of (001) pole figures for the tetragonal-Nd2Fe14B phase (Imax) shows an increase from 2.7 to 4.1 m.r.d. (multiples of random distribution) by increasing the ECAP temperature from 723 to 823 K, while the difference in remanent magnetization between easy and hard directions (Δ Mr) rises from 24.0 to 41.5 Am2/kg. When the BP was increased from 0.25 to 0.5 GPa at 823 K, Imax showed an increase from 2.8 to 4.1 m.r.d. However, Imax saturated for BPs above 0.5 GPa, suggesting that BP has limited effect on the texture formation, although it is necessary for the compaction of the alloy powders. Two multiple-pass ECAP routes conventionally known as routes A and C were employed for two-pass ECAP at 823 K. It is found that route A processing is effective in enhancing the texture formation, while the texture is lost by a subsequent pressing when adopting route C. Therefore, the compaction of Nd13.5Fe73.8Co6.7B5.6Ga0.4 alloy powder using route A ECAP passes with 0.5 GPa BP at 823 K results in pronounced texture, which is beneficial for anisotropic hard magnetic properties.