32 resultados para Maximal unipotent subgroups

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of pacing on performance, oxygen uptake (V̇O2), oxygen deficit and blood lactate accumulation during a 6-minute cycle ergometer test. Six recreational cyclists completed three 6-minute cycling tests using fast-start, even-pacing and slow-fast pacing conditions. Cycle ergometer performance was measured as the mean power output produced for each cycling test. Energy system contribution during each cycling trial was estimated using a modified accumulated oxygen deficit (AOD) method. Blood lactate concentration was analysed from blood sampled using a catheter in a forearm vein prior to exercise, at 2 minutes, 4 minutes and 6 minutes during exercise, and at 2 minutes, 5 minutes and 10 minutes post-exercise. There was no significant difference between the pacing conditions for mean power output (P=0.09), peak V̇O2 (P=0.92), total V̇O2 (P=0.76), AOD (P=0.91), the time-course of V̇O2 (P=0.22) or blood lactate accumulation (P=0.07). There was, however, a significant difference between the three pacing conditions in the oxygen deficit measured over time (P=0.02). These changes in the time-course of oxygen deficit during cycling trials did not, however, significantly affect the mean power output produced by each pacing condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are 3 distinct yet closely integrated processes that operate together to satisfy the energy requirements of muscle. The anaerobic energy system is divided into alactic and lactic components, referring to the processes  involved in the splitting of the stored phosphagens, ATP and  phosphocreatine (PCr), and the nonaerobic breakdown of carbohydrate to lactic acid through glycolysis. The aerobic energy system refers to the combustion of carbohydrates and fats in the presence of oxygen. The anaerobic pathways are capable of regenerating ATP at high rates yet are limited by the amount of energy that can be released in a single bout of intense exercise. In contrast, the aerobic system has an enormous capacity yet is somewhat hampered in its ability to delivery energy quickly. The focus of this review is on the interaction and relative contribution of the energy systems during single bouts of maximal exercise. A particular emphasis has been placed on the role of the aerobic energy system during high intensity exercise.

Attempts to depict the interaction and relative contribution of the energy systems during maximal exercise first appeared in the 1960s and 1970s. While insightful at the time, these representations were based on calculations of anaerobic energy release that now appear questionable. Given repeated reproduction over the years, these early attempts have lead to 2 common misconceptions in the exercise science and coaching professions. First, that the energy systems respond to the demands of intense exercise in an almost sequential manner, and secondly, that the aerobic system responds slowly to these energy demands, thereby playing little role in determining performance over short durations. More recent research suggests that energy is derived from each of the energy-producing pathways during almost all exercise activities. The duration of maximal exercise at which equal contributions are derived from the anaerobic and aerobic energy systems appears to occur between 1 to 2 minutes and most probably around 75 seconds, a time that is considerably earlier than has traditionally been suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To efficiently and yet accurately cluster Web documents is of great interests to Web users and is a key component of the searching accuracy of a Web search engine. To achieve this, this paper introduces a new approach for the clustering of Web documents, which is called maximal frequent itemset (MFI) approach. Iterative clustering algorithms, such as K-means and expectation-maximization (EM), are sensitive to their initial conditions. MFI approach firstly locates the center points of high density clusters precisely. These center points then are used as initial points for the K-means algorithm. Our experimental results tested on 3 Web document sets show that our MFI approach outperforms the other methods we compared in most cases, particularly in the case of large number of categories in Web document sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: This study investigated the effects of endurance training status and sex differences on skeletal muscle Na+,K+-pump mRNA expression, content and activity. Methods: Forty-five endurance-trained males (ETM), 11 recreationally active males (RAM), and nine recreationally active females (RAF) underwent a vastus lateralis muscle biopsy. Muscle was analysed for Na+,K+-pump α1, α2, α3, β1, β2 and β3 isoform mRNA expression (real-time reverse transcription-polymerase chain reaction), content ([3H]-ouabain-binding site) and maximal activity (3-O-methylfluorescein phosphatase, 3-O-MFPase). Results: ETM demonstrated lower α1, α3, β2 and β3 mRNA expression by 74%, 62%, 70% and 82%, respectively, than RAM (P < 0.04). In contrast, [3H]-ouabain binding and 3-O-MFPase activity were each higher in ETM than in RAM, by 16% (P < 0.03). RAM demonstrated a 230% and 364% higher α3 and b3 mRNA expression than RAF, respectively (P < 0.05), but no significant sex differences were found for α1, α2, β1 or β2 mRNA, [3H]-ouabain binding  or 3-O-MFPase activity. No significant correlation was found between years of endurance training and either [3H]-ouabain binding or 3-O-MFPase activity. Significant but weak correlations were found between the number of training hours per week and 3-O-MFPase activity (r = 0.31, P < 0.02) and between incremental exercise V O2(peak) and both   [3H]-ouabain binding (r = 0.33, P < 0.01) and 3-O-MFPase activity (r = 0.28, P < 0.03). Conclusions: Isoform-specific differences in Na+,K+-pump mRNA expression were found with both training status and sex differences, but only training status influenced Na+,K+-pump content and maximal activity in human skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Athletes commonly attempt to enhance performance by training in normoxia but sleeping in hypoxia [live high and train low (LHTL)]. However, chronic hypoxia reduces muscle Na+-K+-ATPase content, whereas fatiguing contractions reduce Na+-K+-ATPase activity, which each may impair performance. We examined whether LHTL and intense exercise would decrease muscle Na+-K+-ATPase activity and whether these effects would be additive and sufficient to impair performance or plasma K+ regulation. Thirteen subjects were randomly assigned to two fitness-matched groups, LHTL (n = 6) or control (Con, n = 7). LHTL slept at simulated moderate altitude (3,000 m, inspired O2 fraction = 15.48%) for 23 nights and lived and trained by day under normoxic conditions in Canberra (altitude ~600 m). Con lived, trained, and slept in normoxia. A standardized incremental exercise test was conducted before and after LHTL. A vastus lateralis muscle biopsy was taken at rest and after exercise, before and after LHTL or Con, and analyzed for maximal Na+-K+-ATPase activity [K+-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase)] and Na+-K+-ATPase content ([3H]ouabain binding sites). 3-O-MFPase activity was decreased by –2.9 ± 2.6% in LHTL (P < 0.05) and was depressed immediately after exercise (P < 0.05) similarly in Con and LHTL (–13.0 ± 3.2 and –11.8 ± 1.5%, respectively). Plasma K+ concentration during exercise was unchanged by LHTL; [3H]ouabain binding was unchanged with LHTL or exercise. Peak oxygen consumption was reduced in LHTL (P < 0.05) but not in Con, whereas exercise work was unchanged in either group. Thus LHTL had a minor effect on, and incremental exercise reduced, Na+-K+-ATPase activity. However, the small LHTL-induced depression of 3-O-MFPase activity was insufficient to adversely affect either K+ regulation or total work performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to compare three calculation methods to determine the load that maximises power output in the power clean. Five male athletes (height=179.8 10.5cms, weight 91 .8 8.8kg, power dean 1RM = 117.0 20.5kg) performed two per cleans at 10% increments from 50% to 100% of 1RM. Bar displacement data was collected using a Ballistic Measurement System (BMS) and vertical ground reaction force (VGRF) data was measured by a Kistler 9287B Force Plate. Power output was calculated for BMS (system mass), BMS (bar mass) and VGRF/BMS system mass. Optimal load was determined to be 70% for the BMS (system mass) and VGRF BMS (system mass) methods and 90% for the BMS (bar mass) method. Sports scientists should be aware of the technical issues underlying these findings due to the practical ramifications for athlete testing and training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The influence of water immersion on neuromuscular function is of importance to a number of disciplines; however, the reliability of surface electromyography (SEMG) following water immersion is not known. This study examined the reliability of SEMG amplitude during maximal voluntary isometric contractions (MVICs) of the vastus lateralis following water immersion.

Methods: Using a Biodex isokinetic dynamometer and in a randomized order, 12 healthy male subjects performed four MVICs at 60° knee flexion on both the dominant and nondominant kicking legs, and the SEMG was recorded. Each subject's dominant and nondominant kicking leg was then randomly assigned to have SEMG electrodes removed or covered during 15 min of water immersion (20°C–25°C). Following water immersion, subjects performed a further four MVICs.

Results: Intraclass correlation coefficient (ICC) and the relative standard error of measurement (%SEM) of SEMG amplitude showed moderate to high trial-to-trial reliability when electrodes were covered (0.93% and 2.79%) and removed (0.95% and 2.10%, respectively).

Conclusions: The results of the this study indicate that SEMG amplitude of the vastus lateralis may be accurately determined during maximal voluntary contractions following water immersion if electrodes are either removed or covered with water-resistive tape during the immersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The VO2-power regression and estimated total energy demand for a 6-minute supramaximal exercise test was predicted from a continuous incremental exercise test. Sub-maximal VO2- power co-ordinates were established from the last 40 seconds(s) of 150-second exercise stages. The precision of the estimated total energy demand was determined using the 95% confidence interval (95% CI) of the estimated total energy demand. The linearity of the individual VO2-power regression equations was determined using Pearson's correlation coefficient. The mean 95% CI of the estimated total energy demand was 5.9±2.5 mL O2 Eq•-1kg•min-1, and the mean correlation coefficient was 0.9942±0.0042. The current study contends that the sub-maximal VO2-power co-ordinates from a continuous incremental exercise test can be used to estimate supra-maximal energy demand without compromising the precision of the accumulated oxygen deficit (AOD) method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study compared the effects of a maximal strength training method with a form of explosive jump training (plyometrics) on soccer players. Overall, the results showed that weight training and jumping groups improved strength and power better than just regular soccer training. There was no difference between the weight lifting and the jumping groups on the strength and power tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Although adverse health effects of prolonged TV viewing have been increasingly recognized, little population-wide information is available concerning subgroups at greatest risk for this behavior.

Purpose
This study sought to identify, in a U.S. population–derived sample, combinations of variables that defined subgroups with higher versus lower levels of usual TV-viewing time.

Methods
A total of 5556 adults from a national consumer panel participated in the mail survey in 2001 (55% women, 71% white, 13% black, and 11% Hispanic). Nonparametric risk classification analyses were conducted in 2008.

Results
Subgroups with the highest proportions of people watching >14 hours/week of TV were identified and described using a combination of demographic (i.e., lower household incomes, divorced/separated); health and mental health (i.e., poorer rated overall health, higher BMI, more depression); and behavioral (i.e., eating dinner in front of the TV, smoking, less physical activity) variables. The subgroup with the highest rates of TV viewing routinely ate dinner while watching TV and had lower income and poorer health. Prolonged TV viewing also was associated with perceived aspects of the neighborhood environment (i.e., heavy traffic and crime, lack of neighborhood lighting, and poor scenery).

Conclusions

The results can help inform intervention development in this increasingly important behavioral health area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated creatine supplementation (CrS) effects on muscle total creatine (TCr), creatine phosphate (CrP), and intermittent sprinting performance by using a design incorporating the time course of the initial increase and subsequent washout period of muscle TCr. Two groups of seven volunteers ingested either creatine [Cr; 6 × (5 g Cr-H2O + 5 g dextrose)/day)] or a placebo (6 × 5 g dextrose/day) over 5 days. Five 10-s maximal cycle ergometer sprints with rest intervals of 180, 50, 20, and 20 s and a resting vastus lateralis biopsy were conducted before and 0, 2, and 4 wk after placebo or CrS. Resting muscle TCr, CrP, and Cr were unchanged after the placebo but were increased (P < 0.05) at 0 [by 22.9 ± 4.2, 8.9 ± 1.9, and 14.0 ± 3.3 (SE) mmol/kg dry mass, respectively] and 2 but not 4 wk after CrS. An apparent placebo main effect of increased peak power and cumulative work was found after placebo and CrS, but no treatment (CrS) main effect was found on either variable. Thus, despite the rise and washout of muscle TCr and CrP, maximal intermittent sprinting performance was unchanged by CrS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated whether fatiguing dynamic exercise depresses maximal in vitro Na+-K+-ATPase activity and whether any depression is attenuated with chronic training. Eight untrained (UT), eight resistance-trained (RT), and eight endurance-trained (ET) subjects performed a quadriceps fatigue test, comprising 50 maximal isokinetic contractions (180°/s, 0.5 Hz). Muscle biopsies (vastus lateralis) were taken before and immediately after exercise and were analyzed for maximal in vitro Na+-K+-ATPase (K+-stimulated 3-O-methylfluoroscein phosphatase) activity. Resting samples were analyzed for [3H]ouabain binding site content, which was 16.6 and 18.3% higher (P < 0.05) in ET than RT and UT, respectively (UT 311 ± 41, RT 302 ± 52, ET 357 ± 29 pmol/g wet wt). 3-O-methylfluoroscein phosphatase activity was depressed at fatigue by −13.8 ± 4.1% (P < 0.05), with no differences between groups (UT −13 ± 4, RT −9 ± 6, ET −22 ± 6%). During incremental exercise, ET had a lower ratio of rise in plasma K+ concentration to work than UT (P < 0.05) and tended (P = 0.09) to be lower than RT (UT 18.5 ± 2.3, RT 16.2 ± 2.2, ET 11.8 ± 0.4 nmol · l−1 · J−1). In conclusion, maximal in vitro Na+-K+-ATPase activity was depressed with fatigue, regardless of training state, suggesting that this may be an important determinant of fatigue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated whether maximal voluntary isometric contractions (MVC-ISO) would attenuate the magnitude of eccentric exercise-induced muscle damage. Young untrained men were placed into one of the two experimental groups or one control group (n = 13 per group). Subjects in the experimental groups performed either two or 10 MVC-ISO of the elbow flexors at a long muscle length (20° flexion) 2 days prior to 30 maximal isokinetic eccentric contractions of the elbow flexors. Subjects in the control group performed the eccentric contractions without MVC-ISO. No significant changes in maximal voluntary concentric contraction peak torque, peak torque angle, range of motion, upper arm circumference, plasma creatine kinase (CK) activity and myoglobin concentration, muscle soreness, and ultrasound echo intensity were evident after MVC-ISO. Changes in the variables following eccentric contractions were smaller (P < 0.05) for the 2 MVC-ISO group (e.g., peak torque loss at 5 days after exercise, 23% ± 3%; peak CK activity, 1964 ± 452 IU·L–1; peak muscle soreness, 46 ± 4 mm) or the 10 MVC-ISO group (13% ± 3%, 877 ± 198 IU·L–1, 30 ± 4 mm) compared with the control (34% ± 4%, 6192 ± 1747 IU·L–1, 66 ± 5 mm). The 10 MVC-ISO group showed smaller (P < 0.05) changes in all variables following eccentric contractions compared with the 2 MVC-ISO group. Therefore, two MVC-ISO conferred potent protective effects against muscle damage, whereas greater protective effect was induced by 10 MVC-ISO, which can be used as a strategy to minimize muscle damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated the importance of maximal Torque-Cadence (T-C) and Power-Cadence (P-C) relationships, for the performances of world class track sprint cyclists. If these relationships are affected by the function of the lower limb muscles, the ability of cyclists to generate torque and power at a given cadence may vary depending on their riding position. During sprint events (individual and team sprints and Keirin), cyclists alternate between standing and seated positions. The T-C and P-C relationships may change with the position adopted by the cyclists. PURPOSE: The aim of this study was to evaluate the necessity to define position specific maximal T-C and P-C relationships. METHODS: Eight junior elite track cyclists from the National Talent Identification squad undertook two inertial-load tests that consisted of four all-out sprints each. One test was undertaken at the velodrome in a standing position on a carbon fibre track bike, and the other test was completed in a seated position on an air-braked stationary ergometer. A calibrated SRM power meter interfaced to a custom instrumentation package was used for all mechanical measurements. Maximal T-C and P-C relationships were analysed to calculate maximal Torque (T0), maximal Power (Pmax) and optimal pedalling cadence (PCopt). RESULTS: All individual T-C and P-C relationships obtained for both body positions were fitted by linear regressions (r2=0.95 ± 0.02) and second order polynomials (r2=0.96 ± 0.01), respectively. T0 was higher (209 ± 2.2N.m vs. 177.0 ± 3.9N.m, p<0.05), PCopt was lower (112.5 ± 11.4rpm vs. 120.1 ± 6.7rpm, p<0.05), and Pmax was higher (1261 ± 235W vs. 1076 ± 183W, p<0.05) in standing position compared to seated position. CONCLUSION: Analysis of track sprint cyclists’ performances can be improved by the determination of position-specific maximal T-C and P-C relationships .