7 resultados para Materials handling.

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study contributes to work in baggage handling system (BHS) control, specifically dynamic bag routing. Although studies in BHS agent-based control have examined the need for intelligent control, but there has not been an effort to explore the dynamic routing problem. As such, this study provides additional insight into how agents can learn to route in a BHS. This study describes a BHS status-based routing algorithm that applies learning methods to select criteria based on routing decisions. Although numerous studies have identified the need for dynamic routing, little analytic attention has been paid to intelligent agents for learning routing tables rather than manual creation of routing rules. We address this issue by demonstrating the ability of agents to learn how to route based on bag status, a robust method that is able to function in a variety of different BHS designs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Teleoperated mobile robotics offer potential use in a variety of different real-world applications including hazardous materials handling, urban search and rescue and explosive ordnance handling and disposal. Recent research discusses the use of Haptic technology in increasing task immersion and teleoperator performance. This work investigates the utility of low-cost, ungrounded tactile haptic interfaces in mobile robotic teleoperation. In order to achieve the desired implementation using only tactile sensation presents distinct challenges. Innovative haptic control methodologies providing the teleoperator with intuitive motion control and task-relevant haptic augmentation are presented within this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Teleoperated mobile robotics offer potential use in a variety of different real-world applications including hazardous materials handling, urban search and rescue and explosive ordnance handling and disposal. Recent research discusses the use of Haptic technology in increasing task immersion and teleoperator performance. This work investigates the utility of low-cost, ungrounded tactile haptic interfaces in mobile robotic teleoperation. In order to achieve the desired implementation using only tactile sensation presents distinct challenges. Innovative haptic control methodologies providing the teleoperator with intuitive motion control and task-relevant haptic augmentation are presented within this paper.