17 resultados para Mangrove biogeochemistry

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The size and pace of change in meiofaunal assemblages suggest that meiofauna make excellent subjects for testing theories about how ecological communities change. A field experiment was performed in which the  abundance and composition of epibionts and meiofauna on natural,  transplanted and mimic pneumatophores were monitored over a 47 wk period. Meiofaunal density increased with growth of algal epibionts, both reaching maximum values after 24 wk, at the end of winter. At this time the assemblages from the 3 substrata were similar, although the combined abundances of meiofauna on transplants and mimics were only 28% of the average on natural pneumatophores. Meiofaunal abundance on all substrata decreased rapidly during spring as algal cover declined due to desiccation. Twenty-three species of nematode were recorded from mimics compared with 8 and 7 from transplants and pneumatophores, respectively. A temporal sequence of feeding groups occurred in the order of epigrowth feeders, deposit feeders, and omnivore/predators, with the latter 2 adding to rather than replacing earlier trophic groups. Scavengers were found only on natural pneumatophores. The turnover rates of nematode species between all census times were similar, peaking at 63%, but there was no trend in the turnover rates with time. We conclude that mimics are more suitable than transplanted pneumatophores for colonisation studies because of their greater persistence and more easily standardised surface area. Moreover, the composition of colonising assemblages on them closely resembled assemblages on natural pneumatophores at the time of peak meiofaunal abundance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meiofauna from Avicennia marina leaf litter in a temperate mangrove forest was enumerated, and the nematode assemblages compared on the bases of leaf colour (used as a guide to leaf age) and shore horizon where samples were collected. Twenty-one putative nematode species were collected from 48 leaf litter samples. Univariate analyses indicated that neither the colour of the leaf nor the shore horizon significantly affected abundance of nematodes. However, of the four (222) treatment groups, rarefaction curves revealed highest diversity on brown leaves from under the shade of the tree canopy (H'=0.751-0.126 SE, n=17). Species diversity of leaf litter nematodes was lower in this temperate mangrove system than reported from tropical mangrove studies. ANOSIM tests confirmed a significant effect of shore horizon on nematode assemblages. The dominant feeding group among nematodes was non-selective deposit feeders (7/21 species, but 77% of all nematodes). Epigrowth grazers were represented by 8/21 species of nematodes, but only 19% of the total number. Excised leaves became skeletonised by about 15 weeks. Shorter temporal scales of life cycles of nematodes compared with leaf degradation, and the dynamic nature of epibiontic assemblages, probably explain the similar assemblage structure on yellow and brown leaves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A field experiment was devised to test whether meiofauna that colonised mimic pneumatophores (artificial substrates) resembled the assemblage on adjacent live pneumatophores in three randomly chosen intertidal, estuarine sites. The experiment showed that the close proximity of particular biota on living pneumatophores did not reliably influence subsequent development of assemblages upon mimic pneumatophores within a scale of 10 m during a colonisation period of less than 20 weeks. There was some convergence of the composition of the colonising assemblage of meiofauna on mimic pneumatophores with the local assemblages in sites dominated by barnacles, or where the natural pneumatophores were free from macroscopic epibionts. However, tychopelagic meiofauna from algal epiphytes did not significantly colonise mimic pneumatophores during the 20-week trial, probably due a lack of growing algae. During the conditioning phase suspended in water at a marine site 20 km from the mangroves, mimic pneumatophores acquired an assemblage of meiofauna different from the estuarine assemblage that colonised mimics following implantation in the estuarine mudflat. Enhanced colonisation rates of mimics in suspended bags at the conditioning site may be explained by the absence of benthic macroinvertebrates, and the lack of intertidal exposure. Biofilms aged 2, 7, and 11 weeks had no consistent, different effect on the subsequent colonisation of meiofauna. We conclude that divergence of phytal-based assemblages of meiofauna depends upon the amount of coverage, as well as the type, of fouling macro-epibionts on the pneumatophores. Meiofaunal assemblages on artificial substrates after 20 weeks colonisation displayed less intrinsic patchiness than mature phytal assemblages on natural pneumatophores, and so present a potentially useful way of improving the power of biomonitoring applications using meiofauna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A field experiment was run to assess how grazing affects meiofaunal colonisation of mimic pneumatophores in a temperate mangrove. The effects of two manipulated factors were tested: mimics (made from wooden dowel rods) were either implanted into the sediment, or suspended just above the substratum; and in addition were either fitted with an aluminium 'snail barrier' or left without. The abundance of meiofauna was estimated on the 4 treatments after 2, 4, 8 and 16 weeks in situ in the intertidal region. After 16 weeks the meiofaunal assemblage was dominated by copepods, and the effect of suspension was highly significant on abundance of the epibiotic assemblage. Mimics suspended above the sediment, out of reach of snails, were fouled with a green algal layer whereas implanted units were not. In contrast, 'snail barriers' were found to be relatively ineffective in preventing access by the dominant herbivorous gastropod Bembicium melanostomum. Meiofaunal assemblages were more abundant on suspended units, but there was greater taxonomic richness at levels of phylum and class on implanted units than on   suspended units. The colonising meiofaunal assemblage was less abundant on implanted mimics than in previous experiments at this study site, and this was attributed to the present experiment being carried out during the dry summer period, when meiofauna on pneumatophores is in decline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The meiofauna of a mangrove forest in the River Barwon estuary was studied by means of surveys and field experiments. Distinctive assemblages of meiofauna were described from the sediment and pneumatophores of the ecosystem. Fine resolution of phytal habitats was demonstrated, and particular assemblages of meiofauna were characteristic within habitat provided by dominant epibionts. Distribution of the meiofauna within leaf litter revealed high turnover rates of nematodes, and some factors controlling detrital assemblages were assessed. The vertical profile of sedimentary meiofauna was examined, and changes in abundance were related to the tychopelagic habit of many taxa at high tide. Dispersal within the water column was confirmed by pelagic trapping, and colonisation of mimic pneumatophores was investigated. The amount of algal cover, effects of grazing by gastropods, and rugosity of the colonised surface were shown to influence meiofauna colonisation of mimic pneumatophores. Establishment and persistence of patchy distributions of meiofauna at scales of less than 10 m in an intertidal environment was demonstrated, and it was concluded that this was due to the dynamic nature of assemblages rather than their integrity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative value of temperate mangroves to fish, and the processes driving patterns of microhabitat use within this habitat, are unknown. There are 3 quickly identifiable microhabitats within temperate Australian mangroves: (1) forest (the area of mangroves with trees); (2) pneumatophores (the area directly seaward of the forest without trees but with pneumatophores [aerial roots]); and (3) channel (the area directly seaward of the pneumatophores without gross structural attributes such as trees or pneumatophores). Duplicate fyke and gill nets were both initially used to sample fish in the 3 microhabitats described above. Sampling took place across the seaward edge of mangroves on 10 sampling occasions (5 night and 5 day), in a large estuarine system in SE Australia. Fish assemblages (693 fish from 20 species and 15 families) varied significantly (p < 0.05) between the forest and the channel, and between diel periods for each gear (net type), but there was little difference in the assemblage structure of fish between forest–pneumatophore or pneumatophore–channel microhabitats. Juvenile lifestages (61% of all fish) and commercially important taxa (76%) were common. Abundance, biomass and species richness of fish were generally lower in the forest than the other microhabitats, but this pattern varied significantly (p < 0.05) between diel periods, among sampling occasions, and with water depth. Highly quantitative pop nets provided a preliminary assessment of whether differential gear selectivity caused patterns between microhabitats, but less rich fish assemblages were again recorded in forests than in pneumatophores. The importance of predation in structuring fish assemblages across microhabitats was assessed by measuring survival of juvenile fish tethered in 3 predation treatments (predator exclusion, cage control, and uncaged). Survival rates were high across the predator treatments and did not vary among microhabitats. The variation in fish assemblages across microhabitats within mangroves was not consistent with a model of mangrove structure providing a refuge for juvenile fish from predation, but instead could indicate differences in efficiency of gear types among microhabitats and/or other ‘edge effect’-driven processes such as the provision of food and/or shelter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resilience of mangroves is dependent on their regeneration capacity. Patchy mid-19th century clearing dramatically affected this capacity, creating stable vegetated and unvegetated states in a fragmented temperate mangrove ecosystem. Mechanisms of mediation between states were tested by monitoring the survival and growth of planted mangrove seedlings and propagules on formerly forested bare mudflats and inside patches of existing forest. Survival (1 to 76%) and growth (-0.83 to 10.45 mm mo-1 increase in plant height) of seedlings was affected by (1) differing levels of exposure found at varying proximities to remnant forest and (2) differing inundation regimes both within and between sites that were randomly selected from locations that varied in aspect relative to prevailing winds. Increases in hydrodynamic energy within and between sites corresponded to a decrease in survival that was much more pronounced at locations that were exposed to prevailing winds. Growth rates were also generally lower at sites in exposed locations, but inundation regime was a more important determinant within sites, where growth was reduced at lower heights on the shore. Results suggest that stability of the bare mudflat state (caused by historical clearance of the mangrove forest) is dependent on level of exposure to hydrodynamic energy, and a return to a forested state is more likely where this exposure is lower. These results have implications for planning and implementing mangrove restoration projects and illustrate the role that physical factors can play in determining the resilience of disturbed temperate mangrove ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saline coastal wetlands, such as mangrove and coastal salt marsh, provide many ecosystem services. In Australia, large areas have been lost since European colonization, particularly as a result of drainage, infilling and flood-mitigation works, often starting in the mid-19th century and aimed primarily towards converting land to agricultural, urban or industrial uses. These threats remain ongoing, and will be exacerbated by rapid population growth and climate change in the 21st century. Establishing the effect of wetland loss on the delivery of ecosystem services is confounded by the absence of a nationally consistent approach to mapping wetlands and defining the boundaries of different types of coastal wetland. In addition, climate change and its projected effect on mangrove and salt marsh distribution and ecosystem services is poorly, if at all, acknowledged in existing legislation and policy. Intensifying climate change means that there is little time to be complacent; indeed, there is an urgent need for proper valuation of ecosystem services and explicit recognition of ecosystem services within policy and legislation. Seven actions are identified that could improve protection of coastal wetlands and the ecosystem services they provide, including benchmarking and improving coastal wetland extent and health, reducing complexity and inconsistency in governance arrangements, and facilitating wetland adaptation and ecosystem service delivery using a range of relevant mechanisms. Actions that build upon the momentum to mitigate climate change by sequestering carbon – ‘blue carbon’ – could achieve multiple desirable objectives, including climate-change mitigation and adaptation, floodplain rehabilitation and habitat protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review addresses how the ecosystem approach to aquaculture (EAA) can optimize aquaculture-fisheries interactions considering different spatial scales from farm, aquaculture zone and watershed through to the global market. Aquaculture and fisheries are closely related subsectors with frequent interactions, largely due to the sharing of common ecosystems and natural resources. Interactions are also born from the flow of biomass from fisheries to aquaculture through fish-based feeds (e.g. fishmeal, fish oil and trashfish), through the collection of wild seed and brookstock, and genetic resources and biomass transfer from aquaculture to fisheries through culture-based fisheries (CBF) and escapees. Negative effects include modification of habitats affecting fisheries resources and activities (e.g. mangrove clearing for shrimp ponds, seabed disturbances through anchoring of aquaculture cages or pens, damage to seagrasses, alteration to reproductive habitats, biodiversity loss). Eutrophication of waterbodies due to excess nutrient release leading to anoxia and fish mortality can also impact negatively on biodiversity and wild fish stocks. Release of diseases and chemicals also imposes some threats on fisheries. Yet there could be beneficial impacts; for example, aquaculture is increasingly contributing to capture fisheries through CBF and could contribute to restore overfished stocks. Aquaculture can offer alternative livelihoods to fisherfolk, providing increased opportunity to them and also to their families, and especially to women. Aquaculture-increased production and marketing can also enhance and indirectly improve processing and market access to similar fishery products. The ecosystem approach to aquaculture (EAA) is a strategy for the management of the sector that emphasizes intersectoral complementarities by taking into account the interactions between all the activities within ecologically meaningful boundaries and acknowledging the multiple services provided by ecosystems. The main objective of this review is to understand the status of aquaculture-fisheries interactions associated with the biological, technological, social, economic, environmental, policy, legal and other aspects of aquaculture development and to analyze how these interactions are or could be addressed with an EAA. Therefore, the review involves aspects of scoping, identification of issues, prioritizing, devising management tools and plans for minimizing negative effects and optimizing positive ones within the context of social-ecological resilience, at different relevant geographical scales. Many of the management measures suggested in this review must involve not only EAA but also an ecosystem approach to fisheries (EAF), especially to deal with issues such as fishery of wild seed and the management of fisheries to produce fishmeal/oil for pelleted feeds or for direct feeding with wet fish. The implementation of EAA and EAF should help to overcome the sectoral and intergovernmental fragmentation of resource management efforts and assist in the development of institutional mechanisms and private-sector arrangements for effective coordination among various sectors active in ecosystems in which aquaculture and fisheries operate and between the various levels of government. Ecosystem-based management involves a transition from traditional sectoral planning and decision-making to the application of a more holistic approach to integrated natural resource management in an adaptive manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human activities in coastal areas frequently cause loss of benthic macrophytes (e.g. seagrasses) and concomitant increases in microalgal production through eutrophication. Whether such changes translate into shifts in the composition of sediment detritus is largely unknown, yet such changes could impact the role these ecosystems play in sequestrating CO 2. We reconstructed the sedimentary records of cores taken from two sites within Botany Bay, Sydney - the site of European settlement of Australia - to look for human-induced changes in dominant sources of detritus in this estuary. Cores covered a period from the present day back to the middle Holocene (~6000 years) according to 210Pb profiles and radiocarbon ( 14C) dating. Depositional histories at both sites could not be characterized by a linear sedimentation rate; sedimentation rates in the last 30-50 years were considerably higher than during the rest of the Holocene. C : N ratios declined and began to exhibit a microalgal source signature from around the time of European settlement, which could be explained by increased nutrient flows into the Bay caused by anthropogenic activity. Analysis of stable isotopic ratios of 12C/ 13C showed that the relative contribution of seagrass and C 3 terrestrial plants (mangroves, saltmarsh) to detritus declined around the time of rapid industrial expansion (~1950s), coinciding with an increase in the contribution of microalgal sources. We conclude that the relative contribution of microalgae to detritus has increased within Botany Bay, and that this shift is the sign of increased industrialization and concomitant eutrophication. Given the lower carbon burial efficiencies of microalgae (~0.1%) relative to seagrasses and C 3 terrestrial plants (up to 10%), such changes represent a substantial weakening of the carbon sink potential of Botany Bay - this occurrence is likely to be common to human-impacted estuaries, and has consequences for the role these systems play in helping to mitigate climate change. © 2011 Blackwell Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deakin University and the Department of Primary Industries were commissioned by ParksVictoria (PV) to create two updated habitat maps for Yaringa and French Island MarineNational Parks. The team obtained a ground-truth data set using in situ video and still photographs. This dataset was used to develop and assess predictive models of benthic marine habitat distributions incorporating data from World-View-2 imagery atmospherically corrected by CSIRO and LiDAR (Light Detection and Ranging) bathymetry. In addition, the team applied an unsupervised classification approach to an aerial photograph to assess the differences between the two remote sensors. This report describes the results of the mapping as well as the methodology used to produce these habitat maps.This study has provided mapping of intertidal and subtidal habitats of Yaringa and FrenchIsland MNPs at a 2 m resolution with fair to good accuracies (Kappa 0.40-0.75). These were combined with mangrove and saltmarsh habitats recently mapped by Boon et al. (2011) to provide compete-coverage habitat maps of Yaringa and French Island MNPs.The mapping showed that Yaringa MNP was dominated by mangroves, wet saltmarsh and dense Zostereaceae, covering 33%, 29% and 19%, respectively. Similarly, intertidalvegetation and subtidal vegetation (dominated by Zosteraceae) covered 26% and 25% ofFrench Island MNP. However, as a result of turbidity and missing satellite imagery 27% ofFrench Island MNP remains unmapped.The coupling of WV-2 and LiDAR reduced potential artefacts (e.g. sun glint causing whiteand black pixels known as the “salt and pepper effect”). The satellite classification appeared to provide better results than the aerial photography classification. However, since there is a two-year difference between the capture of the aerial photography and the collection of the ground-truth data this comparison is potentially temporally confounded. It must also be noted that there are differences in costs of the data,the spatial resolution between the two datasets (i.e. WV-2 = 2 m and the Aerial = 0.5 m) and the amount spectral information contained in the data (i.e. WV-2 = 8 bands and the aerial = 4 bands), which may ultimately determine its utility for a particular project.The spatial assessment using FRAGSTATs of habitat patches within Yaringa MNP provides a viable and cost effect way to assess habitat condition (i.e. shape, size and arrangement).This spatial assessment determined that dense Zosteraceae and NVSG habitat classeswere generally larger in patch size and continuity than the medium/sparse Zosteraceaehabitat. The application spatial techniques to time-series mapping may provide a way toremotely monitor the change in the spatial characteristics of marine habitats.This work was successful in providing new baseline habitat maps using a repeatable method meaning that any future changes in intertidal and shallow water marine habitats may be assessed in a consistent way with quantitative error assessments. In wider use, these maps should also allow improved conservation planning, fisheries and catchment management, and contribute toward infrastructure planning to limit impacts on Western Port.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The single most important asset for the conservation of Australia’s unique and globally significant biodiversity is the National Reserve System, a mosaic of over 10,000 discrete protected areas on land on all tenures: government, Indigenous and private,including on-farm covenants, as well as state, territory and Commonwealth marine parks and reserves.THE NATIONAL RESERVE SYSTEMIn this report, we cover major National Reserve System initiatives that have occurred in the period 2002 to the present and highlight issues affecting progress toward agreed national objectives. We define a minimum standard for the National Reserve System to comprehensively, adequately and representatively protect Australia’s ecosystem and species diversity on sea and land. Using government protected area, species and other relevant spatial data, we quantify gaps: those areas needing to move from the current National Reserve System to one which meets this standard. We also provide new estimates of financial investments in protected areas and of the benefits that protected areas secure for society. Protected areas primarily serve to secure Australia’s native plants and animals against extinction, and to promote their recovery.BENEFITSProtected areas also secure ecosystem services that provide economic benefits forhuman communities including water, soil and beneficial species conservation, climatemoderation, social, cultural and health benefits. On land, we estimate these benefitsare worth over $38 billion a year, by applying data collated by the Ecosystem ServicesPartnership. A much larger figure is estimated to have been secured by marineprotected areas in the form of moderation of climate and impact of extreme eventsby reef and mangrove ecosystems. While these estimates have not been verified bystudies specific to Australia, they are indicative of a very large economic contributionof protected areas. Visitors to national parks and nature reserves spend over $23.6 billion a year in Australia, generating tax revenue for state and territory governments of $2.36 billion a year. All these economic benefits taken together greatly exceed the aggregate annual protected area expansion and management spending by all Australian governments, estimated to be ~$1.28 billion a year. It is clear that Australian society is benefiting far greater than its governments’ investment into strategic growth and maintenance of the National Reserve System.Government investment and policy settings play a leading role in strategic growth of the National Reserve System in Australia, and provide a critical stimulus fornon-government investment. Unprecedented expansion of the National Reserve System followed an historic boost in Australian Government funding under Caring for Our Country 2008–2013. This expansion was highly economical for the Australian Government, costing an average of only $44.40 per hectare to buy and protect land forever. State governments have contributed about six times this amount toward the expansion of the National Reserve System, after including in-perpetuity protected area management costs. The growth of Indigenous Protected Areas by the Australian Government has cost ~$26 per hectare on average, including management costs capitalised in-perpetuity, while also delivering Indigenous social and economic outcomes. The aggregate annual investment by all Australian governments has been ~$72.6 million per year on protected area growth and ~$1.21 billion per year on recurrent management costs. For the first time in almost two decades, however, the Australian Government’s National Reserve System Program, comprising a specialist administrative unit and funding allocation, was terminated in late 2012. This program was fundamental in driving significant strategic growth in Australia’s protected area estate. It is highly unlikely that Australia can achieve its long-standing commitments to an ecologically representative National Reserve System, and prevent major biodiversity loss, without this dedicated funding pool. The Australian Government has budgeted ~$400 million per year over the next five years (2013-2018) under the National Landcare and related programs. This funding program should give high priority to delivery of national protected area commitments by providing a distinct National Reserve System funding allocation. Under the Convention on Biological Diversity (CBD), Australia has committed to bringing at least 17 percent of terrestrial and at least 10 per cent of marine areas into ecologically representative, well-connected systems of protected areas by 2020 (Aichi Target 11).BIODIVERSITY CONSERVATIONAustralia also has an agreed intergovernmental Strategy for developing a comprehensive, adequate and representative National Reserve System on land andsea that, if implemented, would deliver on this CBD target. Due to dramatic recent growth, the National Reserve System covers 16.5 per cent of Australia’s land area, with highly protected areas, such as national parks, covering 8.3 per cent. The marine National Reserve System extends over one-third of Australian waters with highly protected areas such as marine national parks, no-take or green zones covering 13.5 per cent. Growth has been uneven however, and the National Reserve System is still far from meeting Aichi Target 11, which requires that it also be ecologically representative and well-connected. On land, 1,655 of 5,815 ecosystems and habitats for 138 of 1,613 threatened species remain unprotected. Nonetheless, 436 terrestrial ecosystems and 176 threatened terrestrial species attained minimum standards of protection due to growth of the National Reserve System on land between 2002 and 2012. The gap for ecosystem protection on land – the area needed to bring all ecosystems to the minimum standard of protection – closed by a very substantial 20 million hectares (from 77 down to 57 million hectares) between 2002 and 2012, not including threatened species protection gaps. Threatened species attaining a minimum standard for habitat protection increased from 27 per cent to 38 per cent over the decade 2002–2012. A low proportion of critically endangered species meeting the standard (29 per cent) and the high proportion with no protection at all (20 per cent) are cause for concern, but one which should be relatively easy to amend, as the distributions of these species tend to be small and localised. Protected area connectivity has increased modestly for terrestrial protected areas in terms of the median distance between neighbouring protected areas, but this progress has been undermined by increasing land use intensity in landscapes between protected areas.A comprehensive, adequate and representative marine reserve system, which meetsa standard of 15 per cent of each of 2,420 marine ecosystems and 30 per cent of thehabitats of each of 177 marine species of national environmental significance, wouldrequire expansion of marine national parks, no-take or green zones up to nearly 30per cent of state and Australian waters, not substantially different in overall extentfrom that of the current marine reserve system, but different in configuration.Protection of climate change refugia, connectivity and special places for biodiversityis still low and requires high priority attention. FINANCING TO FILL GAPS AND MEET COMMITMENTSIf the ‘comprehensiveness’ and ‘representativeness’ targets in the agreed terrestrial National Reserve System Strategy were met by 2020, Australia would be likely to have met the ‘ecologically representative’ requirement of Aichi Target 11. This would requireexpanding the terrestrial reserve system by at least 25 million hectares. Considering that the terrestrial ecosystem protection gap has closed by 20 million hectares over the past decade, this required expansion would be feasible with a major boost in investment and focus on long-standing priorities. A realistic mix of purchases, Indigenous Protected Areas and private land covenants would require an Australian Government National Reserve System investment of ~$170 million per year over the five years to 2020, representing ~42 per cent of the $400 million per year which the Australian Government has budgeted for landcare and conservation over the next five years. State, territory and local governments, private and Indigenous partners wouldlikewise need to boost financial commitments to both expand and maintain newprotected areas to meet the agreed National Reserve System strategic objectives.The total cost of Australia achieving a comprehensive, adequate and representativemarine reserve system that would satisfy Aichi Target 11 is an estimated $247 million.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification of extracellular conductive pilus-like structures (PLS) i.e. microbial nanowires has spurred great interest among scientists due to their potential applications in the fields of biogeochemistry, bioelectronics, bioremediation etc. Using conductive atomic force microscopy, we identified microbial nanowires in Microcystis aeruginosa PCC 7806 which is an aerobic, photosynthetic microorganism. We also confirmed the earlier finding that Synechocystis sp. PCC 6803 produces microbial nanowires. In contrast to the use of highly instrumented continuous flow reactors for Synechocystis reported earlier, we identified simple and optimum culture conditions which allow increased production of nanowires in both test cyanobacteria. Production of these nanowires in Synechocystis and Microcystis were found to be sensitive to the availability of carbon source and light intensity. These structures seem to be proteinaceous in nature and their diameter was found to be 4.5-7 and 8.5-11 nm in Synechocystis and M. aeruginosa, respectively. Characterization of Synechocystis nanowires by transmission electron microscopy and biochemical techniques confirmed that they are type IV pili (TFP) while nanowires in M. aeruginosa were found to be similar to an unnamed protein (GenBank : CAO90693.1). Modelling studies of the Synechocystis TFP subunit i.e. PilA1 indicated that strategically placed aromatic amino acids may be involved in electron transfer through these nanowires. This study identifies PLS from Microcystis which can act as nanowires and supports the earlier hypothesis that microbial nanowires are widespread in nature and play diverse roles.