2 resultados para Manchester-by-the-Sea

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Islands-in-the-sea nanofibres are a very interesting system: one polymer (islands) is distributed in fibrillar domains within a second polymer (sea). This fibre geometry is often used in microfiber technologies to obtain very fine fibers, by removing the “sea” polymer. This geometry also allows to combine two polymers with very different properties. In this work this geometry is introduced applied to electrospun hydrogel nanofibers, in a novel fashion, and as a way to improve and stabilize the hydrogel nanofibers. Thermo-responsive islands-in-the-sea nanofibers are here produced by electrospinning solutions of a hydrogel-forming thermo-responsive polymer (crosslinked poly(N-isopropylacrylamide), PNIPAM) and a reinforcing polymer (polyetherketone cardo, PEK-c). The two polymers are thermodynamically incompatible in solution and phase separation takes place, which allows the instant formation of islands-in-the-sea nanofibers upon electrospinning. PNIPAM was then crosslinked post-spinning using an oligomeric silsesquioxane. The formed nanocomposite nanofibers showed intrinsic nanostructure, where the fibril-like PNIPAM domains are intimately adjacent to the strong PEK-c domains. Upon contacting with water, the hydrogel domains became instantly highly swollen, while the PEK-c domains did not. As a result, very wrinkly, swollen fibers were obtained, with increased capillary action, as demonstrated through confocal microscopy. The composite nanofibers in water showed excellent swelling ratios and very fast responses to temperature variations (of the order of 1 second) with morphological and optical effects: variations in fiber-diameter were accompanied by optical transitions: transparent-opaque. The produced hydrogel nanofibers also presented improved mechanical properties (even with small amounts of PEK-c), when compared to their crosslinked-PNIPAM-only nanofibers. It will be also shown how these materials can be used as optical actuators and smart hydrogel platforms with tuneable contact angle and morphology. In brief, this work aims to demonstrate a new platform technology which can be applied to several hydrogel systems, to achieve hydrogel-based composites with new and improved properties, while retaining (and improving) the main properties of the hydrogel. Here this was demonstrated by showing that the composite materials showed thermo-responsiveness, and enhanced transition kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many over-exploited marine ecosystems worldwide have lost their natural populations of large predatory finfish and have become dominated by crustaceans and other invertebrates. Controversially, some of these simplified ecosystems have gone on to support highly successful invertebrate fisheries capable of generating more economic value than the fisheries they replaced. Such systems have been compared with those created by modern agriculture on land, in that existing ecosystems have been converted into those that maximize the production of target species. Here, we draw on a number of concepts and case-studies to argue that this is highly risky. In many cases, the loss of large finfish has triggered dramatic ecosystem shifts to states that are both ecologically and economically undesirable, and difficult and expensive to reverse. In addition, we find that those stocks left remaining are unusually prone to collapse from disease, invasion, eutrophication and climate change. We therefore conclude that the transition from multispecies fisheries to simplified invertebrate fisheries is causing a global decline in biodiversity and is threatening global food security, rather than promoting it.