10 resultados para Machinability Assessment

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of austempered ductile iron (ADI) is gaining an ever greater share of the worldwide ferrous product market, specifically centering on the aerospace, automotive and shipping industries. ADI is a heat treated cast iron, which exhibits remarkable mechanical properties and provides an attractive material for designers and engineers to displace conventional materials. Previous attempts, however, to machine ADI using carbide or ceramic cutting tools produced poor tool life characteristics due to the relatively poor machinability of the workpiece. This paper presents a research study that has applied the advanced technology of modern ultrahard cutting tools, in an attempt to achieve enhanced machinability performance. This performance was evaluated through the analysis of cutting forces, tool wear, surface finish and roundness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium alloy Ti-6Al-4V is the most commonly used titanium alloy in the aerospace and biomedical industries due to its superior material properties. An experimental investigation has been carried out to evaluate the machinability of high performance aerospace alloys (Ti-6Al-4V) to determine their in service performance characteristics based on different machining strategies. Nearly 80-90% of the titanium used in airframes is Ti-6Al-4V. The experimental design consist of face milling Ti-6Al-4V at 12 different combinations of cutting parameters consisting of Depth Of Cut (DoC)- 1, 2 and 3 mm; speeds- 60 and 100 m/min; coolant on/off and at constant feed rate of 0.04mm/tooth. Post machining analysis consists of cutting force measurement, surface texture analysis and metallographic analysis. The future work consists of in-depth investigation into the phase transformational reactions during machining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for high strength materials and improvements in heat treatment techniques has given rise to this new form of high strength steel known as nanobainite steel. The production of nanobainite steel involves slow isothermal holding of austenitic steel around 200oC for 10 days, in order to obtain a carbon enriched austenite and cooling to room temperature using austempering. The microstructure of nanobainite steel is dual phase consisting of alternate layers of bainitic ferrite and austenite. The experimental design consists of face milling under 12 combination of Depth of Cut (DoC)-1, 2 and 3mm; cutting speed-100 and 150m/min; constant feed- 0.15mm/rev and coolant on/off. The machinability of the material is assessed by means of analysis such as metallography and cutting force analysis. The results obtained are used to assess the most favorable condition to machine this new variety of steel. Future work involves study on phase transformation by quantifying the microstructural phase before and after milling using XRD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium alloy (Ti-6Al-4V) has a wide range of application in various fields of engineering. Titanium is mainly used to manufacture aerospace components like landing gear, fuselage, wings, engines etc. and biomedical components like hip joint, knee joint, dental implants etc. Titanium has outstanding material properties such as corrosion resistance, fatigue strength, tensile strength and a very good biocompatibility which makes this material very alluring for biomedical applications. Contrary, the machinability of the material is problematic because of the phase transformations and thus, titanium alloy is a challenge for machining operation. This research is a comparative analysis between the implants manufactured by traditional method of casting and machining. The femoral stem of the hip joint replacement is designed and the component is machined using a five-axis CNC machine.The machined component was subjected to surface roughness testing, tensile testing and bulk hardness testing. The values were compared with the values of titanium implants manufactured by casting. © (2014) Trans Tech Publications, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to high demand in engineering materials especially with high strength to weight ratio and advantageous material properties such as wear resistance and thermal stability or high entropy. This essential parametric enhancement has led to the development of Multi Component High Entropy Alloys (MCHEA). It has been proposed in this study to investigate the machinability characteristics of MCHEA. The MCHEA are usually amalgamation with multiple elements such as aluminium, cobalt, manganese, nickel, chromium and titanium with their individual concentrations ranging from 5-35% overall. The experimental design consists of basic characterization of the material and conducting machinability trails-milling. The basic material characterization consists of evaluating bulk hardness, microstructural image generation, microhardness and chemical composition using spectrometry. The milling trails are conducted using 2 flute, 30º helix ball nose solid carbide end-mill cutting tool with combination of cutting parameters such as constant cutting speed, 30 m/min; varied feed, 0.01 mm/tooth and 0.02mm/tooth; depth of cuts, 1.5 and 3 mm and coolant on. The outputs obtained from the machining trails are subjected to analysis such as cutting force. In addition, the surface roughness of the material is evaluated using 3D optical surface profilometer. Similarly, the solutions to alleviate the drawbacks are also exemplified during machining of MCHEA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Changes in the metal-working industry, as a result of new environmental legislation or health and safety initiatives, creates the need for constant re-formulation of soluble cutting fluids. In order for there to be confidence in the product's ability to perform its required function successfully, there must be some clearly defined test methods for assessing machinability. Such a test methodology must provide comprehensive data on the fluid's lubrication and cooling properties, which are likely to occur in application. This paper describes the functions of soluble cutting fluids and discusses ways in which performance has been previously determined. Furthermore, it presents a new method for assessing machinability which is proposed as the basis for the development of a new and universal test protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inferior surface quality is a significant problem faced by machinist. The purpose of this study is to present a surface texture analysis undertaken as part of machinability assessment of Super Austenitic Stainless Steel alloy-AL6XN. The surface texture analysis includes measuring the surface roughness and investigating the microstructural behaviour of the machined surfaces. Eight milling trials were conducted using combination of cutting parameters under wet machining. An optical profilometer (non-contact), was used to evaluate the surface texture at three positions. The surface texture was represented using the parameter, average surface roughness. Scanning Electron Microscope was utilised to inspect the machined surface microstructure and co relate with the surface roughness results. Results showed that maximum roughness values recorded at the three positions in the longitudinal direction (perpendicular to the machining grooves) were 1.21 μm (trial 1), 1.63 μm (trial 6) and 1.68 μm (trial 7) respectively whereas the roughness values were greatly reduced in the lateral direction. Also, results showed that the feed rate parameter significantly influences the roughness values compared to the other cutting parameters. The microstructure of the machined surfaces was distorted by the existence of cracks, deformed edges and bands and wear deposition due to machining process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Titanium alloys are of great demand in the aerospace and biomedical industries. Most the titanium products are either cast or sintered to required shape and finish machined to get the appropriate surface texture to meet the design requirements. Ti-6Al-4V is often referred as work horse among the titanium alloys due to its heavy use in the aerospace industry. This paper is an attempt to investigate and improve the machining performance of Ti-6Al-4V. Thin wall machining is an advance machining technique especially used in machining turbine blades which can be done both in a conventional way and using a special technique known as trochoidal milling. The experimental design consists of conducting trials using combination of cutting parameters such as cutting speed (vc), 90 and 120 m/min; feed/tooth (fz) of 0.25 and 0.35 mm/min; step over (ae) 0.3 and 0.2; at constant depth of cut (ap) 20mm and using coolant. A preliminary assessment of machinability of Ti-6Al-4V during thin wall machining using trochoidal milling is done. A correlation established using cutting force, surface texture and dimensional accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manufacturing engineering has had to undergo drastic changes in the approach to material selection in order to meet new design challenges. In the automotive industry, researchers in their effort to reduce emissions and satisfy environmental regulations, have shifted their focus to new emerging materials such as high-strength aluminium alloys, metal matrix composites, plastics, polymers and of late, Austempered Ductile Iron (ADI). ADI is a good choice for design where the criterion is high performance at reduced weight and cost. The unique, ausferrite microstructure gives the material desirable material properties and an edge over other materials. A comparative study of ADI in terms of materials properties and machining characteristics with other materials is desirable to highlight the potential of the material. This paper focuses on a comparative assessment of material and machining characteristics of ADI for different applications. The properties under consideration are machinability, weight and cost savings and versatility. ADI has a higher strength-to-weight ratio than aluminium making it a ready alternative for material selection. In terms of machinability, there are some problems associated with machining of ADI due to its work hardening nature. This paper attempts to identify the possible potential applications of ADI, by critically reviewing specific applications such as machinability, overall economics and service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing demand for high strength materials with the development of technology and critical applications. Nano materials are newly developed materials with extremely high strength for this purpose. Nanobainite is a dual phase material containing alternate layers of bainitic ferrite in nano dimensions and retained austenite. Nanobainite is produced by isothermally holding austenitized steel at a temperature of 200°C or less, depending on the chemical composition, for 6 10 days until bainite forms and then cooling to room temperature using austempering. The experimental design consisted of face milling under 12 combinations of Depth of Cut (DOC)-1, 2 and 3mm; cutting speed-100 and 150m/min; constant feed-0.15mm/rev and coolant on/off. The machinability of the material is assessed by means of analysis, such as surface texture and microhardness. The assessment also involves microstructural comparisons before and after milling. Future work involves quantifying the microstructural phase before and after milling using XRD. The results obtained are used to assess the most favorable condition to cut this new variety of steel.