13 resultados para MURINE MODEL

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The apical cytoplasm of airway epithelium (AE) contains abundant labile zinc (Zn) ions that are involved in the protection of AE from oxidants and inhaled noxious substances. A major question is how dietary Zn traffics to this compartment. In rat airways, in vivo selenite autometallographic (Se-AMG)-electron microscopy revealed labile Zn-selenium nanocrystals in structures resembling secretory vesicles in the apical cytoplasm. This observation was consistent with the starry-sky Zinquin fluorescence staining of labile Zn ions confined to the same region. The vesicular Zn transporter ZnT4 was likewise prominent in both the apical and basal parts of the epithelium both in rodent and human AE, although the apical pools were more obvious. Expression of ZnT4 mRNA was unaffected by changes in the extracellular Zn concentration. However, levels increased 3-fold during growth of cells in air liquid interface cultures and decreased sharply in the presence of retinoic acid. When comparing nasal versus bronchial human AE cells, there were significant positive correlations between levels of ZnT4 from the same subject, suggesting that nasal brushings may allow monitoring of airway Zn transporter expression. Finally, there were marked losses of both basally-located ZnT4 protein and labile Zn in the bronchial epithelium of mice with allergic airway inflammation. This study is the first to describe co-localization of zinc vesicles with the specific zinc transporter ZnT4 in airway epithelium and loss of ZnT4 protein in inflamed airways. Direct evidence that ZnT4 regulates Zn levels in the epithelium still needs to be provided. We speculate that ZnT4 is an important regulator of zinc ion accumulation in secretory apical vesicles and that the loss of labile Zn and ZnT4 in airway inflammation contributes to AE vulnerability in diseases such as asthma.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The prevalence of food allergic diseases is rising and poses an increasing clinical problem. Peanut allergy affects around 1% of the population and is a common food allergy associated with severe clinical manifestations. The exact route of primary sensitization is unknown although the gastrointestinal immune system is likely to play an important role. Exposure of the gastrointestinal tract to soluble antigens normally leads to a state of antigen-specific systemic hyporesponsiveness (oral tolerance). A deviation from this process is thought to be responsible for food-allergic diseases. In this study, we have developed a murine model to investigate immunoregulatory processes after ingestion of peanut protein and compared this to a model of oral tolerance to chicken egg ovalbumin (OVA). We demonstrate that oral tolerance induction is highly dose dependent and differs for the allergenic proteins peanut and OVA. Tolerance to peanut requires a significantly higher oral dose than tolerance to OVA. Low doses of peanut are more likely to induce oral sensitization and increased production of interleukin-4 and specific immunoglobulin E upon challenge. When tolerance is induced both T helper 1 and 2 responses are suppressed. These results show that oral tolerance to peanut can be induced experimentally but that peanut proteins have a potent sensitizing effect. This model can now be used to define regulatory mechanisms following oral exposure to allergenic proteins on local, mucosal and systemic immunity and to investigate the immunomodulating effects of non-oral routes of allergen exposure on the development of allergic sensitization to peanut and other food allergens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To identify genes involved in the central regulation of energy balance, we compared hypothalamic mRNA from lean and obese Psammomys obesus, a polygenic model of obesity, using differential display PCR. One mRNA transcript was observed to be elevated in obese, and obese diabetic, P. obesus compared with lean animals and was subsequently found to be increased 4-fold in the hypothalamus of lethal yellow agouti (Ay/a) mice, a murine model of obesity and diabetes. Intracerebroventricular infusion of antisense oligonucleotide targeted to this transcript selectively suppressed its hypothalamic mRNA levels and resulted in loss of body weight in both P. obesus and Sprague Dawley rats. Reductions in body weight were mediated by profoundly reduced food intake without a concomitant reduction in metabolic rate. Yeast two-hybrid screening, and confirmation in mammalian cells by bioluminescence resonance energy transfer analysis, demonstrated that the protein it encodes interacts with endophilins, mediators of synaptic vesicle recycling and receptor endocytosis in the brain. We therefore named this transcript Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1). SGIP1 encodes a large proline-rich protein that is expressed predominantly in the brain and is highly conserved between species. Together these data suggest that SGIP1 is an important and novel member of the group of neuronal molecules required for the regulation of energy homeostasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Impaired glucose uptake is associated with both cardiac hypertrophy and contractile dysfunction, but whether there are common underlying  mechanisms linking these conditions is yet to be determined. Using a ‘gene dose’ Cre-Lox GLUT4-deficient murine model, we examined the effect of suppressed glucose availability on global myocardial gene expression and glycolysis substrate bypass on the function of isolated perfused hearts. Performance of hearts from 22- to 60-week-old male GLUT4 knockout (KO, > 95% reduction in GLUT4), GLUT4 knockdown (KD, 85% reduction in cardiac GLUT4) and C57Bl/6 wild-type (WT) controls was measured ex vivo in Langendorff mode perfusion. DNA microarray was used to profile mRNA expression differences between GLUT4-KO and GLUT4-KD hearts. At 22 weeks, GLUT4-KO hearts exhibited cardiac hypertrophy and impaired contractile function ex vivo, characterized by a 40% decrease in developed pressure. At 60 weeks, dysfunction was accentuated in GLUT4-KO hearts and evident in GLUT4-KD hearts. Exogenous pyruvate (5 mM) restored systolic pressure to a level equivalent to WT (GLUT4-KO, 176.8 ± 13.2 mmHg vs. WT, 146.4 ± 9.56 mmHg) in 22-week-old GLUT4-KO hearts but not in 60-week-old GLUT4-KO hearts. In GLUT4-KO, DNA microarray analysis detected downregulation of a number of genes centrally involved in mitochondrial oxidation and upregulation of other genes indicative of a shift to cytosolic β-oxidation of long chain fatty acids. A direct link between cardiomyocyte GLUT4 deficiency, hypertrophy and contractile dysfunction is demonstrated. These data provide mechanistic insight into the myocardial metabolic adaptations associated with short and long-term insulin resistance and indicate a window of opportunity for substrate intervention and functional ‘rescue’.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The induction of a cytotoxic T lymphocyte (CTL) response following influenza infection can lead to the formation of immunity capable of recognizing viruses of a different antigenicity. Our ability to exploit such broadly reactive responses in vaccination strategies is hampered by a lack of understanding on the regulation of CTL responses. In this report, we describe the utilization of reverse genetics to produce a range of recombinant viruses lacking immunodominant murine CTL epitopes. Recombinant viruses lacking the epitopes had indistinguishable growth properties in vitro and in vivo compared with the wild-type virus. Analysis of a primary immune response to these viruses showed that mutation of the anchor-binding residue leads to a loss of a response to that epitope, but no compensating increase in responses to other immunodominant epitopes. The utilization of reverse genetics and the murine model of influenza infection hold great promise for elucidating the factors regulating the CTL response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Defective efferocytosis may perpetuate inflammation in smokers with or without chronic obstructive pulmonary disease (COPD). Macrophages may phenotypically polarize to classically activated M1 (proinflammatory; regulation of antigen presentation) or alternatively activated M2 (poor antigen presentation; improved efferocytosis) markers. In bronchoalveolar lavage (BAL)–derived macrophages from control subjects and smoker/ex-smoker COPD subjects, we investigated M1 markers (antigen-presenting major histocompatibility complex [MHC] Classes I and II), complement receptors (CRs), the high-affinity Fc receptor involved with immunoglobulin binding for phagocytosis (Fc-gamma receptor, FcγR1), M2 markers (dendritic cell–specific intercellular adhesion molecule-grabbing nonintegrin [DC-SIGN] and arginase), and macrophage function (efferocytosis and proinflammatory cytokine production in response to LPS). The availability of glutathione (GSH) in BAL was assessed, because GSH is essential for both M1 function and efferocytosis. We used a murine model to investigate macrophage phenotype/function further in response to cigarette smoke. In lung tissue (disaggregated) and BAL, we investigated CRs, the available GSH, arginase, and efferocytosis. We further investigated the therapeutic effects of an oral administration of a GSH precursor, cysteine l-2-oxothiazolidine-4-carboxylic acid (procysteine). Significantly decreased efferocytosis, available GSH, and M1 antigen–presenting molecules were evident in both COPD groups, with increased DC-SIGN and production of proinflammatory cytokines. Increased CR-3 was evident in the current-smoker COPD group. In smoke-exposed mice, we found decreased efferocytosis (BAL and tissue) and available GSH, and increased arginase, CR-3, and CR-4. Treatment with procysteine significantly increased GSH, efferocytosis (BAL: control group, 26.2%; smoke-exposed group, 17.66%; procysteine + smoke-exposed group, 27.8%; tissue: control group, 35.9%; smoke-exposed group, 21.6%; procysteine + smoke-exposed group, 34.5%), and decreased CR-4 in lung tissue. Macrophages in COPD are of a mixed phenotype and function. The increased efferocytosis and availability of GSH in response to procysteine indicates that this treatment may be useful as adjunct therapy for improving macrophage function in COPD and in susceptible smokers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease; it is a leading cause of death and existing treatments have no proven disease-modifying effect. The mechanisms underlying this resistance are largely unknown, but suggest the presence of some self-maintaining pathogenic process, possibly initiated by cigarette smoking, that prevents the normal resolution of inflammation. We have previously reported increased production of proinflammatory cytokines and granzyme b by CD8+ T cells in COPD; costimulatory receptor/ligand interactions required include CD80:86/CD28, B7-1/CTLA4, 4-1BB/1BBL and OX40/OX40L. We hypothesized that a dysregulated expression/function of these molecules may play a role in inflammatory/autoimmune components of COPD. We analysed T cell co-stimulatory molecules in blood from 34 controls, 15 smokers and 48 COPD subjects. We assessed the potential functional relevance of CD8/CD28null cells in COPD by measuring their production of proinflammatory cytokines, co-stimulatory molecules, granzyme and perforin. A smoke-exposed murine model was applied to investigate the relative expression of CD8/CD28null T cells in blood, lung tissue and airway. CD8/CD28null cells were increased in both current- and ex-smoker COPD groups; these cells expressed significantly more interferon (IFN)-γ, OX40, 4-1BB, CTLA4, granzyme and perforin when stimulated than CD8/CD28+ T cells. There were no changes in CD4/CD28null T cells. In mice exposed to cigarette smoke for 12 weeks, CD8/CD28null T cells were significantly increased in the airway with a trend for an increase in lung tissue and blood. Increased production of proinflammatory cytokines and expression of alternative co-stimulatory molecules by CD8/CD28null T cells may play a role in inflammatory or autoimmune responses in COPD and identify therapeutic targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD), cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2 transporters responding differently to zinc deficiency signals and that these play important roles in macrophage efferocytosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The tx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell. Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multi-vesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of tx mice

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of granulopoiesis and acts through binding to its specific receptor (G-CSF-R) on neutrophilic granulocytes. Previous studies of signaling from the 4 G-CSF-R cytoplasmic tyrosine residues used model cell lines that may have idiosyncratic, nonphysiological responses. This study aimed to identify specific signals transmitted by the receptor tyrosine residues in primary myeloid cells. To bypass the presence of endogenous G-CSF-R, a chimeric receptor containing the extracellular domain of the epidermal growth factor receptor in place of the entire extracellular domain of the G-CSF-R was used. A series of chimeric receptors containing tyrosine mutations to phenylalanine, either individually or collectively, was constructed and expressed in primary bone marrow cells from G-CSF-deficient mice. Proliferation and differentiation responses of receptor-expressing bone marrow cells stimulated by epidermal growth factor were measured. An increased 50% effective concentration to stimulus of the receptor Ynull mutant indicated that specific signals from tyrosine residues were required for cell proliferation, particularly at low concentrations of stimulus. Impaired responses by mutant receptors implicated G-CSF-R Y764 in cell proliferation and Y729 in granulocyte differentiation signaling. In addition, different sensitivities to ligand stimulation between mutant receptors indicated that G-CSF-R Y744 and possibly Y729 have an inhibitory role in cell proliferation. STAT activation was not affected by tyrosine mutations, whereas ERK activation appeared to depend, at least in part, on Y764. These observations have suggested novel roles for the G-CSF-R tyrosine residues in primary cells that were not observed previously in studies in cell lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide is implicated in the pathogenesis of various neuropathologies characterized by oxidative stress. Although nitric oxide has been reported to be involved in the exacerbation of oxidative stress observed in several neuropathologies, existent data fail to provide a holistic description of how nitrergic pathobiology elicits neuronal injury. Here we provide a comprehensive description of mechanisms contributing to nitric oxide induced neuronal injury by global transcriptomic profiling. Microarray analyses were undertaken on RNA from murine primary cortical neurons treated with the nitric oxide generator DETA-NONOate (NOC-18, 0.5 mM) for 8–24 hrs. Biological pathway analysis focused upon 3672 gene probes which demonstrated at least a ±1.5-fold expression in a minimum of one out of three time-points and passed statistical analysis (one-way anova, P < 0.05). Numerous enriched processes potentially determining nitric oxide mediated neuronal injury were identified from the transcriptomic profile: cell death, developmental growth and survival, cell cycle, calcium ion homeostasis, endoplasmic reticulum stress, oxidative stress, mitochondrial homeostasis, ubiquitin-mediated proteolysis, and GSH and nitric oxide metabolism. Our detailed time-course study of nitric oxide induced neuronal injury allowed us to provide the first time a holistic description of the temporal sequence of cellular events contributing to nitrergic injury. These data form a foundation for the development of screening platforms and define targets for intervention in nitric oxide neuropathologies where nitric oxide mediated injury is causative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 This thesis investigated the role of milk, extracellular matrix and mammary adipocytes in regulating mammary gland function during involution in mice and explored the use of an in vitro culture model, the mammosphere model system to study the same.