6 resultados para MULTIPLIERS

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an alternative approach to solving a standard problem, frequently encountered in advanced microeconomics, using the technique of Lagrange multipliers. The objective is to enhance the understanding of students as to the derivation of the second-order conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Face recognition with multiple views is a challenging research problem. Most of the existing works have focused on extracting shared information among multiple views to improve recognition. However, when the pose variation is too large or missing, 'shared information' may not be properly extracted, leading to poor recognition results. In this paper, we propose a novel method for face recognition with multiple view images to overcome the large pose variation and missing pose issue. By introducing a novel mixed norm, the proposed method automatically selects candidates from the gallery to best represent a group of highly correlated face images in a query set to improve classification accuracy. This mixed norm combines the advantages of both sparse representation based classification (SRC) and joint sparse representation based classification (JSRC). A trade off between the ℓ1-norm from SRC and ℓ2,1-norm from JSRC is introduced to achieve this goal. Due to this property, the proposed method decreases the influence when a face image is unseen and has large pose variation in the recognition process. And when some face images with a certain degree of unseen pose variation appear, this mixed norm will find an optimal representation for these query images based on the shared information induced from multiple views. Moreover, we also address an open problem in robust sparse representation and classification which is using ℓ1-norm on the loss function to achieve a robust solution. To solve this formulation, we derive a simple, yet provably convergent algorithm based on the powerful alternative directions method of multipliers (ADMM) framework. We provide extensive comparisons which demonstrate that our method outperforms other state-of-the-arts algorithms on CMU-PIE, Yale B and Multi-PIE databases for multi-view face recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many vision problems deal with high-dimensional data, such as motion segmentation and face clustering. However, these high-dimensional data usually lie in a low-dimensional structure. Sparse representation is a powerful principle for solving a number of clustering problems with high-dimensional data. This principle is motivated from an ideal modeling of data points according to linear algebra theory. However, real data in computer vision are unlikely to follow the ideal model perfectly. In this paper, we exploit the mixed norm regularization for sparse subspace clustering. This regularization term is a convex combination of the l1norm, which promotes sparsity at the individual level and the block norm l2/1 which promotes group sparsity. Combining these powerful regularization terms will provide a more accurate modeling, subsequently leading to a better solution for the affinity matrix used in sparse subspace clustering. This could help us achieve better performance on motion segmentation and face clustering problems. This formulation also caters for different types of data corruptions. We derive a provably convergent algorithm based on the alternating direction method of multipliers (ADMM) framework, which is computationally efficient, to solve the formulation. We demonstrate that this formulation outperforms other state-of-arts on both motion segmentation and face clustering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many real-world computer vision applications, such as multi-camera surveillance, the objects of interest are captured by visual sensors concurrently, resulting in multi-view data. These views usually provide complementary information to each other. One recent and powerful computer vision method for clustering is sparse subspace clustering (SSC); however, it was not designed for multi-view data, which break down its linear separability assumption. To integrate complementary information between views, multi-view clustering algorithms are required to improve the clustering performance. In this paper, we propose a novel multi-view subspace clustering by searching for an unified latent structure as a global affinity matrix in subspace clustering. Due to the integration of affinity matrices for each view, this global affinity matrix can best represent the relationship between clusters. This could help us achieve better performance on face clustering. We derive a provably convergent algorithm based on the alternating direction method of multipliers (ADMM) framework, which is computationally efficient, to solve the formulation. We demonstrate that this formulation outperforms other alternatives based on state-of-The-Arts on challenging multi-view face datasets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, there has been studies on the cardinality constrained multi-cycle problems on directed graphs, some of which considered chains co-existing on the same digraph whilst others did not. These studies were inspired by the optimal matching of kidneys known as the Kidney Exchange Problem (KEP). In a KEP, a vertex on the digraph represents a donor-patient pair who are related, though the kidney of the donor is incompatible to the patient. When there are multiple such incompatible pairs in the kidney exchange pool, the kidney of the donor of one incompatible pair may in fact be compatible to the patient of another incompatible pair. If Donor A’s kidney is suitable for Patient B, and vice versa, then there will be arcs in both directions between Vertex A to Vertex B. Such exchanges form a 2-cycle. There may also be cycles involving 3 or more vertices. As all exchanges in a kidney exchange cycle must take place simultaneously, (otherwise a donor can drop out from the program once his/her partner has received a kidney from another donor), due to logistic and human resource reasons, only a limited number of kidney exchanges can occur simultaneously, hence the cardinality of these cycles are constrained. In recent years, kidney exchange programs around the world have altruistic donors in the pool. A sequence of exchanges that starts from an altruistic donor forms a chain instead of a cycle. We therefore have two underlying combinatorial optimization problems: Cardinality Constrained Multi-cycle Problem (CCMcP) and the Cardinality Constrained Cycles and Chains Problem (CCCCP). The objective of the KEP is either to maximize the number of kidney matches, or to maximize a certain weighted function of kidney matches. In a CCMcP, a vertex can be in at most one cycle whereas in a CCCCP, a vertex can be part of (but in no more than) a cycle or a chain. The cardinality of the cycles are constrained in all studies. The cardinality of the chains, however, are considered unconstrained in some studies, constrained but larger than that of cycles, or the same as that of cycles in others. Although the CCMcP has some similarities to the ATSP- and VRP-family of problems, there is a major difference: strong subtour elimination constraints are mostly invalid for the CCMcP, as we do allow smaller subtours as long as they do not exceed the size limit. The CCCCP has its distinctive feature that allows chains as well as cycles on the same directed graph. Hence, both the CCMcP and the CCCCP are interesting and challenging combinatorial optimization problems in their own rights. Most existing studies focused on solution methodologies, and as far as we aware, there is no polyhedral studies so far. In this paper, we will study the polyhedral structure of the natural arc-based integer programming models of the CCMcP and the CCCCP, both containing exponentially many constraints. We do so to pave the way for studying strong valid cuts we have found that can be applied in a Lagrangean relaxation-based branch-and-bound framework where at each node of the branch-and-bound tree, we may be able to obtain a relaxation that can be solved in polynomial time, with strong valid cuts dualized into the objective function and the dual multipliers optimised by subgradient optimisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian construction industry continues to play an important role in the national economy. Analysis using input–output tables makes it possible to understand the role of the construction industry in Australia’s economy and its relationships to other major industries over years. This study applies several economic indicators to investigate the construction industry’s contributions to gross national product and gross national income, as well as its backward and forward linkage indicators, and its output and input multipliers. The paper also investigates the purchases of goods and services by the construction industry from other sectors and its sales to other industries over the analysis period. Findings from this research may help policymakers to better understand the economic linkages between the construction industry and other major industries, and the structural changes in its inputs and outputs in relation to these others.