112 resultados para MOLTEN-SALT

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molten salts, 1-methyl,3-ethylimidazolium trifluoromethanesulfonate (triflate salt, MeEtImTf) and 1-methyl,3-ethylimidazolium bis(trifluoromethanesulfonimide) (imide salt, MeEtImNTf2) are colourless ionic liquids with conductivities of the order of 10−2 S cm−1 at room temperature. DSC measurements revealed subambient melting and glass transition temperatures. Analysis of the anion and cation diffusion coefficients suggested that the cation was the dominant charge carrier and that the motion was largely independent of the anion. Haven ratios (HRs) of 1 and 1.6 were determined for the imide and triflate salts, respectively, at 30°C (303 K). Values greater than one imply some degree of ionic association, suggesting that aggregation is present in the triflate salt. Mixing of the salts to form binary systems resulted in enhanced conductivities which deviated from a simple law of mixtures. Thermal analysis showed no evidence of a melting point with only a glass transition observed. Corresponding diffusion measurements for the binaries appeared to show a weighted average of the diffusion coefficients of the pure components. The increased conductivity can be attributed to an increase in the number of charge carriers as a result of decreased ion association in the binary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements have been made of the force between molecularly smooth mica surfaces immersed in ethylammonium nitrate, which is a molten salt at room temperature, and in mixtures of this salt with water across the concentration range from 10 -4 M to that of the pure salt, which is 11.2 M. At low concentrations the salt behaves as a typical 1:1 electrolyte, and we measure an electrical double-layer force whose range decreases with increasing salt concentration. At high concentrations, above about 1 M, the double-layer force becomes so weak and short-ranged that it is completely dominated by a solvation force extending up to 5 nm. In the pure molten salt the solvation force is an oscillatory function of surface separation comparable to that measured in simple nonpolar liquids. No monotonic component of solvation force is found.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conductivities greater than or equal to 10−8 S cm−1 at Tg are reported in polymer electrolytes based on lithium triflate salt and a series of polymers whose Tg is greater than 90°C. The highest conductivities were observed for poly(acrylonitrile) based systems with salt concentrations greater than 60 wt.%. The conductivity in all cases investigated increases with increasing salt concentration. 1H-NMR T2 relaxation measurements suggest that Tg decreases with increasing salt content and confirms that these materials are glassy at room temperature and hence that the conductivity is significantly decoupled from the structural relaxations. It appears that the nature of the polymer is important in determining the level of ionic conductivity, possibly due to differences in polymer coordinating ability or differences in Tg. Polymer-in-salt mixtures based on a tetra-alkyl ammonium imide molten salt and several high Tg polymers are also reported. The conductivities of these mixtures appear to be independent of the polymer type.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new family of molten salts is reported, based on the N-alkyl, N-alkyl pyrrolidinium cation and the bis(trifluoromethane sulfonyl)imide anion. Some of the members of the family are molten at room temperature, while the smaller and more symmetrical members have melting points around 100 °C. Of the room-temperature molten salt examples, the methyl butyl derivative exhibits the highest conductivity; at 2 × 10-3 S/cm this is the highest molten salt conductivity observed to date at room temperature among the ammonium salts. This highly conductive behavior is rationalized in terms of the role of cation planarity. The salts also exhibit multiple crystalline phase behavior below their melting points and exhibit significant conductivity in at least their higher temperature crystal phase. For example, the methyl propyl derivative (mp = 12 °C) shows ion conductivity of 1 × 10-6 S/cm at 0 °C in its higher temperature crystalline phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, two different polymer membrane systems based on Nafion and Teflon were investigated as proton conductors for polymer membrane fuel cells. Water-free Nafion117 membranes swollen with different non-aqueous solvents were prepared. The solvents included imidazole, imidazole–imidazolium salt solutions, room temperature molten salts and molten salt–acid solutions. Teflon films were treated with a surfactant, or a Nafion solution, to improve their surface properties, and were subsequently swollen with phosphoric acid. Conductivity measurements were carried out on both the Nafion and Teflon membranes. Conductivities in the range of 10−3 S cm−1 at around 100°C were obtained. This is still an order of magnitude lower than the corresponding water swollen Nafion at 80°C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New findings supporting the stability of the superoxide ion, O2˙(-), in the presence of the phosphonium cation, [P6,6,6,14](+), are presented. Extended electrochemical investigations of a series of neat phosphonium-based ILs with different anions, including chloride, bis(trifluoromethylsulfonyl)imide and dicyanamide, demonstrate the chemical reversibility of the oxygen reduction process. Quantum chemistry calculations show a short intermolecular distance (r = 3.128 Å) between the superoxide ion and the phosphonium cation. NMR experiments have been performed to assess the degree of long term degradation of [P6,6,6,14](+), in the presence of superoxide and peroxide species, showing no chemically distinct degradation products of importance in reversible air cathodes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metal-air batteries are a well-established technology that can offer high energy densities, low cost and environmental responsibility. Despite these favourable characteristics and utilisation of oxygen as the cathode reactant, these devices have been limited to primary applications, due to a number of problems that occur when the cell is recharged, including electrolyte loss and poor efficiency. Overcoming these obstacles is essential to creating a rechargeable metal-air battery that can be utilised for efficiently capturing renewable energy. Despite the first metal-air battery being created over 100 years ago, the emergence of reactive metals such as lithium has reinvigorated interest in this field. However the reactivity of some of these metals has generated a number of different philosophies regarding the electrolyte of the metal-air battery. Whilst much is already known about the anode and cathode processes in aqueous and organic electrolytes, the shortcomings of these electrolytes (i.e. volatility, instability, flammability etc.) have led some of the metal-air battery community to study room temperature ionic liquids (RTILs) as non-volatile, highly stable electrolytes that have the potential to support rechargeable metal-air battery processes. In this perspective, we discuss how some of these initial studies have demonstrated the capabilities of RTILs as metal-air battery electrolytes. We will also show that much of the long-held mechanistic knowledge of the oxygen electrode processes might not be applicable in RTIL based electrolytes, allowing for creative new solutions to the traditional irreversibility of the oxygen reduction reaction. Our understanding of key factors such as the effect of catalyst chemistry and surface structure, proton activity and interfacial reactions is still in its infancy in these novel electrolytes. In this perspective we highlight the key areas that need the attention of electrochemists and battery engineers, in order to progress the understanding of the physical and electrochemical processes in RTILs as electrolytes for the various forms of rechargeable metal-air batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bis(trifluoromethanesulfonyl)imide ion has recently been used in its lithium salt as a useful ion in solid polymer electrolytes because of the reduced degree of ion interaction its diffuse charge generates. In this work we have synthesised a number of novel salts based on the ammonium and pyrrolidinium cations of this anion. The salts all show reduced melting points compared with analogous halide salts. In some cases they are molten at room temperature. This latter group of salts have been characterized with respect to their properties as ionic liquids; the highest room temperature conductivity 2 mS cm−1 being exhibited by methyl butyl pyrrolidinium imide. Many of the salts are glass forming, exhibiting glass transition temperatures in the region of −90°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of a family of novel quaternary ammonium salts based on the bis(trifluoromethylsulfonyl)imide and triflate anions are reported. Binary phase diagrams for some of their mixtures and their electrochemical windows of stability are also reported. The highest conductivity observed in the pure salt systems at 25 °C was 7 × 10-4 S cm-1. An electrochemical window of stability of up to 5 V was measured on graphite electrodes. The effect of salt structure and solvent on conductivity of the salts is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results are presented from a series of laboratory model studies of the flushing of saline water from a partially- or fully-closed estuary. Experiments have been carried out to determine quantitatively the response of the trapped saline volume to fresh water flushing discharges Q for different values of the estuary bed slope α and the density difference (∆ρ)o between the saline and fresh water. The trapped saline water forms a wedge within the estuary and for maintained steady discharges, flow visualisation and density profile data confirm that its response to the imposition of the freshwater purging flow occurs in two stages, namely (i) an initial phase characterised by intense shear-induced mixing at the nose of the wedge and (ii) a relatively quiescent second phase where the mixing is significantly reduced and the wedge is forced relatively slowly down and along the bed slope. Scalings based upon simple energy balance considerations are shown to be successful in (i) describing the time-dependent wedge behaviour and (ii) quantifying the proportion of input kinetic energy converted into increasing the potential energy of the wedge/river system. Measurements show that the asymptotic value of the energy conversion factor increases with increasing value of the river Froude number Fro at small values of Fro, thereafter reaching a maximum value and a gradual decrease at the highest values of Fro. Dimensional analysis considerations indicate that the normalised, time-dependent wedge position (xw)3(g')o/q2 can be represented empirically by a power-law relationship of the form (xw)[(g')o/q2]1/3 =C [(t)[(g')o2/q]1/3]"where the proportionality coefficient C is a function of both Fro and the slope angle α and the exponent n has a value of 0.24. Successful attempts are made to relate the model data to existing field observations from a microtidal estuary.

Experiments with multiple, intermittent periodic flushing flows confirm the importance of the starting phase of each flushing event for the time dependent behaviour of the saline wedge after reaching equilibrium in the intervals between such events. For the parameter ranges investigated and for otherwise-identical external conditions, no significant differences are found in the position of the wedge between cases of sequential multiple flushing flows and steady single discharges of the same total duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal and molecular structure of Gingras' salt [n-Bu4N]+ [Ph3SnF2] is reported, which reveals a variety of inter- and intramolecular C---H...F hydrogen bonding interactions. A 119Sn MAS-NMR spectrum was recorded and a tensor analysis has been performed according to the method of Herzfeld and Berger. The results are discussed in terms of the molecular structure and are compared with the parent compound Ph3SnF as well as with Mes3SnF (Mes=mesityl).


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of laboratory experiments were carried out to investigate the response of a bar-blocked, saltwedge estuary to the imposition of both steady freshwater inflows and transient inflows that simulate storm events in the catchment area or the regular water releases from upstream reservoirs. The trapped salt water forms a wedge within the estuary, which migrates downstream under the influence of the freshwater inflow. The experiments show that the wedge migration occurs in two stages, namely (i) an initial phase characterized by intense shear-induced mixing at the nose of the wedge, followed by (ii) a relatively quiescent phase with significantly reduced mixing in which the wedge migrates more slowly downstream.

Provided that the transition time tT between these two regimes satisfies tT>g′h4L/q3α, as was the case for all our experiments and is likely to be the case for most estuaries, then the transition occurs at time tT=1.2(gα3L6/g′3q2)1/6, where g′=gΔρ/ρ0 is the reduced gravity, g the acceleration due to gravity, Δρ the density excess of the saline water over the density ρ0 of the freshwater, q the river inflow rate per unit width, and L and α are the length and bottom slope of the estuary, respectively.

A simple model, based on conversion of the kinetic energy of the freshwater inflow into potential energy to mix the salt layer, was developed to predict the displacement xw over time t of the saltwedge nose from its initial position. For continuous inflows subject to t<tT, the model predicts the saltwedge displacement as xw/h=1.1 (t/τ)1/3, where the normalizing length and time scales are h=(q2/g)1/3 and τ=g′α2h4L/q3, respectively. For continuous inflows subject to t>tT, the model predicts the displacement as xw/h=0.45N1/6(t/τ)1/6/α, where N=q2/g′h2L is a non-dimensional number for the problem. This model shows very good agreement with the experiments. For repeated, pulsed discharges subject to t<tT, the saltwedge displacement is given by (xw/h)3−(x0/h)(xw/h)2=1.3t/τ, where x0 is the initial displacement following one discharge event but prior to the next event. For pulsed discharges subject to t>tT, the displacement is given by (xw/h)6−(x0/h)(xw/h)5=0.008N(t/τ)/α6. This model shows very good agreement with the experiments for the initial discharge event but does systematically underestimate the wedge position for the subsequent pulses. However, the positional error is less than 15%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mono-isopropylamine salt of glyphosate was selectively determined directly in industrial and commercial formulations using flow injection analysis with tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection without the need for separation. Glyphosate and its mono-isopropylamine salt furnished detection limits of 7×10−9 and 3.5×10−10 M and relative standard deviations of 0.4% at 1×10−7 M and 0.8% at 5×10−8 M, respectively. The methodology is robust and reliable with samples subjected only to aqueous dilution prior to analysis.