18 resultados para MOLECULAR-HYDROGEN

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocelluloses were prepared from sugarcane bagasse celluloses by dynamic high pressure microfluidization (DHPM), aiming at achieving a homogeneous isolation through the controlling of shearing force and pressure within a microenvironment. In the DHPM process, the homogeneous cellulose solution passed through chambers at a higher pressure in fewer cycles, compared with the high pressure homogenization (HPH) process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) demonstrated that entangled network structures of celluloses were well dispersed in the microenvironment, which provided proper shearing forces and pressure to fracture the hydrogen bonds. Gel permeation chromatography (GPC), CP/MAS 13C NMR and Fourier transform infrared spectroscopy (FT-IR) measurements suggested that intra-molecular hydrogen bonds were maintained. These nanocelluloses of smaller particle size, good dispersion and lower thermal stability will have great potential to be applied in electronics devices, electrochemistry, medicine, and package and printing industry. © 2014 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocellulose from cotton cellulose was prepared by high pressure homogenization (HPH) in ionic liquids (1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The nanocellulose possessed narrow particle size distribution, with diameter range of 10–20 nm. Weight average molecular weight (Mw) of nanocellulose treated by HPH was lower (173.8 kDa) than the one ILs treated cellulose (344.6 kDa). X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and Solid-state CP/MAS 13C NMR measurements were employed to study the mechanism of structural changes, which suggested that network structure between cellulose chains were destructed by the shearing forces of HPH in combination with ionic liquids. The intermolecular and intra-molecular hydrogen bonds of cellulose were further destroyed, leading to the long cellulose molecular chains being collapsed into short chains. Therefore, the nanocellulose could provide desired properties, such as lower thermal stability and strong water holding capacity. Results indicated that it had great potential in the applications for packaging, medicines, cosmetics and tissue engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we demonstrate that an amphiphilic block copolymer such as polyethylene glycol-b-polyethylene can be used as both dispersing and interfacial compatibilizing agent for the melt compounding of LLDPE with cellulose nano-fibers. A simple and effective spray drying methodology was first used for the first time for the preparation of a powdered cellulose nano-fibers extrusion feedstock. Surface adsorption of the amphiphilic PEG-b-PE was carried out directly in solution during this process. These various dry cellulosic feedstock were subsequently combined with LLDPE via extrusion to produce a range of nano-composites. The collective outcomes of this research are several folds. Firstly we show that presence of surface adsorbed PEG-b-PE effectively hindered the aggregation of the cellulose nano-fibers during the extrusion, affording clear homogenous materials with minimum aggregation even at the highest loading of cellulose nano-fibers (∼23 vol.%). Secondly, the tailored LLDPE/cellulose interface arising from intra- and inter-molecular hydrogen and Van der Waals bonds yielded significant levels of mechanical improvements in terms of storage and tensile modulus. We believe this study provides a simple technological template to produce high quality and performant polyolefins cellulose-based nano-composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal and molecular structure of Gingras' salt [n-Bu4N]+ [Ph3SnF2] is reported, which reveals a variety of inter- and intramolecular C---H...F hydrogen bonding interactions. A 119Sn MAS-NMR spectrum was recorded and a tensor analysis has been performed according to the method of Herzfeld and Berger. The results are discussed in terms of the molecular structure and are compared with the parent compound Ph3SnF as well as with Mes3SnF (Mes=mesityl).


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The pregnane X receptor (PXR) plays a critical role in the regulation of human cytochrome P450 3A4 (CYP3A4) gene. In this study, we investigated the effect of an array of compounds isolated from Chinese herbal medicines on the activity of PXR using a luciferase reporter gene assay in transiently transfected HepG2 and Huh7 cells and on the expression of PXR and CYP3A4 in LS174T cells. Furthermore, molecular docking was performed to investigate the binding modes of herbal compounds with PXR.

2. Praeruptorin A and C, salvianolic acid B, sodium danshensu, protocatechuic aldehyde, cryptotanshinone, emodin, morin, and tanshinone IIA significantly transactivated the CYP3A4 reporter gene construct in either HepG2 or Huh7 cells. The PXR mRNA expression in LS174T cells was significantly induced by physcion, protocatechuic aldehyde, salvianolic acid B, and sodium danshensu. However, epifriedelanol, morin, praeruptorin D, mulberroside A, tanshinone I, and tanshinone IIA significantly down-regulated the expression of PXR mRNA in LS174T cells.

3. All the herbal compounds tested can be readily docked into the ligand-binding cavity of PXR mainly through hydrogen bond and aromatic interactions with Ser247, Gln285, His407, and Arg401.

4. These findings suggest that herbal medicines can significantly regulate PXR and CYP3A4 and this has important implication in herb–drug interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the high strength and stiffness of polymer nanocomposites, they usually display lower deformability and toughness relative to their matrices. Spider silk features exceptionally high stiffness and toughness via the hierarchical architecture based on hydrogen-bond (H-bond) assembly. Inspired by this intriguing phenomenon, we here exploit melamine (MA) to reinforce poly(vinyl alcohol) (PVA) via H-bond self-assembly at a molecular level. Our results have shown that due to the formation of physical cross-link network based on H-bond assembly between MA and PVA, yield strength, Young’s modulus, extensibility, and toughness of PVA are improved by 22, 25, 144, and 200% with 1.0 wt % MA, respectively. Moreover, presence of MA can enhance the thermal stability of PVA to a great extent, even exceeding some nanofillers (e.g., graphene). This work provides a facile method to improve the mechanical properties of polymers via H-bond self-assembly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions. © 2014 Biophysical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure of plants to UV-C irradiation induces gene expression and cellular responses that are commonly associated with wounding and pathogen defence, and in some cases can lead to increased resistance against pathogen infection. We examined, at a physiological, molecular and biochemical level, the effects of and responses to, sub-lethal UV-C exposure on Arabidopsis plants when irradiated with increasing dosages of UV-C radiation. Following UV-C exposure plants had reduced leaf areas over time, with the severity of reduction increasing with dosage. Severe morphological changes that included leaf glazing, bronzing and curling were found to occur in plants treated with the 1000 J·m(-2) dosage. Extensive damage to the mesophyll was observed, and cell death occurred in both a dosage- and time-dependent manner. Analysis of H2 O2 activity and the pathogen defence marker genes PR1 and PDF1.2 demonstrated induction of these defence-related responses at each UV-C dosage tested. Interestingly, in response to UV-C irradiation the production of callose (β-1,3-glucan) was identified at all dosages examined. Together, these results show plant responses to UV-C irradiation at much lower doses than have previously been reported, and that there is potential for the use of UV-C as an inducer of plant defence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interfacial interaction of composites dominates the properties of polymeric/inorganic nanocomposites. Herein, epoxy and hydroxyl groups are introduced into the natural rubber (NR) molecular chains to anchor oxygenous functional groups on the surface of graphene oxide (GO) sheets and therefore enhance the interfacial interaction between GO and rubber. From the morphological observation and interaction analysis, it is found that epoxidized natural rubber (ENR) latex particles are assembled onto the surfaces of GO sheets by employing hydrogen bonding interaction as driving force. This self-assembly depresses restacking and agglomeration of GO sheets and leads to homogenous dispersion of GO within ENR matrix. The formation of hydrogen bonding interface between ENR and GO demonstrates a significant reinforcement for the ENR host. Compared with those of pure ENR, the composite with 0.7 wt% GO loading receives 87% increase in tensile strength and 8.7 fold increase in modulus at 200% elongation after static in-situ vulcanization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forbidden disulfides are stressed disulfides found in recognisable protein contexts previously defined as structurally forbidden. The torsional strain of forbidden disulfides is typically higher than for structural disulfides, but not so high as to render them immediately susceptible to reduction under physionormal conditions. The meta-stability of forbidden disulfides makes them likely candidates as redox switches. Here we mined the Protein Data Bank for examples of the most common forbidden disulfide, the aCSDn. This is a canonical motif in which disulfide-bonded cysteine residues are positioned directly opposite each other on adjacent anti-parallel β-strands such that the backbone hydrogen bonded moieties are directed away from each other. We grouped these aCSDns into homologous clusters and performed an extensive physicochemical and informatic analysis of the examples found. We estimated their torsional energies using quantum chemical calculations and studied differences between the preferred conformations of the computational model and disulfides found in solved protein structures to understand the interaction between the forces imposed by the disulfide linkage and typical constraints of the surrounding β-sheet. In particular, we assessed the twisting, shearing and buckling of aCSDn-containing β-sheets, as well as the structural and energetic relaxation when hydrogen bonds in the motif are broken. We show the strong preference of aCSDns for the right-handed staple conformation likely arises from its compatibility with the twist, shear and Cα separation of canonical β-sheet. The disulfide can be accommodated with minimal distortion of the sheet, with almost all the strain present as torsional strain within the disulfide itself. For each aCSDn cluster, we summarise the structural and strain data, taxonomic conservation and any evidence of redox activity. aCSDns are known substrates of thioredoxin-like enzymes. This, together with their meta-stability, means they are ideally suited to biological switching roles and are likely to play important roles in the molecular pathways of oxidative stress.