14 resultados para MIMO-OFDM, wireless communications, indoor wireless transmissions

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a framework for indoor location prediction system using multiple wireless signals available freely in public or office spaces. We first propose an abstract architectural design for the system, outlining its key components and their functionalities. Different from existing works, such as robot indoor localization which requires as precise localization as possible, our work focuses on a higher grain: location prediction. Such a problem has a great implication in context-aware systems such as indoor navigation or smart self-managed mobile devices (e.g., battery management). Central to these systems is an effective method to perform location prediction under different constraints such as dealing with multiple wireless sources, effects of human body heats or mobility of the users. To this end, the second part of this pa- per presents a comparative and comprehensive study on different choices for modeling signals strengths and prediction methods under different condition settings. The results show that with simple, but effective modeling method, almost perfect prediction accuracy can be achieved in the static environment, and up to 85% in the presence of human movements. Finally, adopting the proposed framework we outline a fully developed system, named Marauder, that support user interface interaction and real-time voice-enabled location prediction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In traditional stop-and-wait strategy for reliable communications, such as ARQ, retransmission for the packet loss problem would incur a great number of packet transmissions in lossy wireless ad-hoc networks. We study the reliable multicast lifetime maximization problem by alternatively exploring the random linear network coding in this paper. We formulate such problem as a min-max problem and propose a heuristic algorithm, called maximum lifetime tree (MLT), to build a multicast tree that maximizes the network lifetime. Simulation results show that the proposed algorithms can significantly increase the network lifetime when compared with the traditional algorithms under various distributions of error probability on lossy wireless links.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A novel geographic routing protocol for multi-hop wireless sensor networks is presented. It exploits the broadcast nature of the wireless channel to enable on-demand cooperative relaying and leapfrogging for circumventing weak radio links. In order to achieve energy efficiency, a metric is introduced for next-hop selection that takes into account information on the residual battery energy, the geographical position of the sensor nodes, and the channel quality of the involved radio links when available. Performance results show that the completely decentralized protocol offers significant benefits by reducing the number of (re)transmissions required to reach the destination. This translates into network-wide energy savings that extend the network lifetime.

Relevância:

50.00% 50.00%

Publicador:

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Wireless Personal Area Networks provide a pivotal role in local area network technology complementing traditional Wireless Local Area Network technologies. Bluetooth, ZigBee and NFC (Near Field Communications) have emerged as key WPAN technologies with UWB (Ultra Wide Band) standards currently evolving. They are however subject to the usual range of security vulnerabilities found in wireless LANs such as spoofing, snooping, man-in-the-middle, denial of service and other attacks. However security in WPANs is not as mature as it is in Wireless LANs and further work is needed in order to provide comparable protection. This paper examines a range of WPAN technologies and security issues and proposes protection mechanisms that can mitigate risk in each case. © 2012 IEEE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cryptographic keys are necessary to secure communications among mesh clients in wireless mesh networks. Traditional key establishment schemes are implemented at higher layers, and the security of most such designs relies on the complexity of computational problems. Extracting cryptographic keys at the physical layer is a promising approach with information-theoretical security. But due to the nature of communications at the physical layer, none of the existing designs supports key establishment if communicating parties are out of each other's radio range, and all schemes are insecure against man-in-the-middle attacks. This paper presents a cross-layer key establishment scheme where the established key is determined by two partial keys: one extracted at the physical layer and the other generated at higher layers. The analysis shows that the proposed cross-layer key establishment scheme not only eliminates the aforementioned shortcomings of key establishment at each layer but also provides a flexible solution to the key generation rate problem. © 2014 Springer International Publishing Switzerland.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Data aggregation in wireless sensor networks is employed to reduce the communication overhead and prolong the network lifetime. However, an adversary may compromise some sensor nodes, and use them to forge false values as the aggregation result. Previous secure data aggregation schemes have tackled this problem from different angles. The goal of those algorithms is to ensure that the Base Station (BS) does not accept any forged aggregation results. But none of them have tried to detect the nodes that inject into the network bogus aggregation results. Moreover, most of them usually have a communication overhead that is (at best) logarithmic per node. In this paper, we propose a secure and energy-efficient data aggregation scheme that can detect the malicious nodes with a constant per node communication overhead. In our solution, all aggregation results are signed with the private keys of the aggregators so that they cannot be altered by others. Nodes on each link additionally use their pairwise shared key for secure communications. Each node receives the aggregation results from its parent (sent by the parent of its parent) and its siblings (via its parent node), and verifies the aggregation result of the parent node. Theoretical analysis on energy consumption and communication overhead accords with our comparison based simulation study over random data aggregation trees.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Advances in information and communications technology has led to a significant advances in noncontact portable devices capable of monitoring vital signals of patients. These wearable and implantable bio-monitoring systems allow collections of wearable sensors to be constructed as a Body Area Network (BAN) to record biological data for a subject. Such systems can be used to improve the quality of life and treatment outcomes for patients. One of the main uses for a bio-monitoring system is to record biological data values from a subject and provide them to a doctor or other medical professional. However, wearable bio-monitoring systems raise unique security considerations. In this paper, we discuss some of the security considerations that have arisen in our work around communications agnostic bio-monitoring, and how we have addressed these concerns. Furthermore, the issues related to the identifying and trusting sender and receiver entities are discussed.