7 resultados para MICROCOMPRESSION

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pillars were fabricated by focused-ion beam (FIB) in a dual beam scanning electron microscope (SEM, FEI Quanta 3D). A multi-step milling procedure was adopted to prepare the pillars using Ga+ ion beam operated at 30 kV. The beam current was reduced from 5 nA for coarse milling down to 50 pA for fine milling, to minimize the surface damage induced by the Ga+ ion beam. The pillars were imaged at 52° tilt angle by SEM prior to the microcompression tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcompression tests were performed to determine the mechanical behavior of nano-crystalline Cu/Fe and Fe/Cu multilayers, as well as monolithic Cu and Fe thin films. The results show that the micropillars of pure Cu thin film bulge out under large compressive strains without failure, while those of pure Fe thin film crack near the top at low compressive strains followed by shear failure. For Cu/Fe and Fe/Cu multilayers, the Cu layers accommodate the majority of plastic deformation, and the geometry constraints imposed by Fe layers exaggerates the bulging in the Cu layers. However, the existence of ductile Cu layers does not improve the overall ductility of Cu/Fe and Fe/Cu multilayers. Cracking in the Fe layers directly lead to the failure of the multilayer micropillars, although the Cu layers have very good ductility. The results imply that suppressing the cracking of brittle layers is more important than simply adding ductile layers for improving the overall ductility of metallic multilayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanical behaviours of CuFe thin films and multilayers at micron scales were investigated by microcompression and nanoindentation tests. Experimental and modelling results provide essential understanding on the extrinsic size effects in polycrystalline metallic multilayers, which is critical for optimising mechanical properties of thin films and multilayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcompression tests were performed on monolithic Cu and Fe thin films and a Cu/Fe multilayer that had each individual layer of 200 nm thick, to understand the mechanical behaviour of multiple nanolayers. The micron-sized pillars were prepared by focused-ion beam (FIB) technique and compressed with a flat punch in a nanoindenter. The flow curves of the monolithic Cu and Fe thin films and Cu/Fe multilayer were extracted from the microcompression tests. The monolithic Cu thin film bulges in the top region of the pillar, while the Fe thin film cracks due to its columnar grain structure. For the Cu/Fe multilayer, the ductile Cu layers accommodate the majority of plastic deformation upon compression, while cracking in the Fe layers leads to the failure of the multilayer. Finite element models of microcompression tests were also developed to provide insights into the deformation behaviours of the multilayer and monolithic thin films. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plastic strain gradients can influence the work-hardening behaviour of metals due to the accumulation of geometrically necessary discolations at the micron/submicron scale. A finite element model based on the conventional theory of mechanism-based strain-gradient plasticity has been developed to simulate the micropillar compression of Cu–Fe thin films and multilayers. The modelling results show that the geometric constraints lead to inhomogeneous deformation in the Cu layers, which agrees well with the bulging of Cu layers observed experimentally. Plastic strain gradients develop inside the individual layers, leading to extra work-hardening due to the accumulation of geometrically necessary dislocations. In the multilayer specimens, the Cu layers deform more severely than the Fe layers, resulting in the development of tensile stresses in the Fe layers. It is proposed that these tensile stresses are responsible for the development of micro-cracks in the Fe layers.