253 resultados para MICROALLOYED STEELS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deformation and recrystallization behaviour of a range of Nb microalloyed steels has been studied using hot torsion. This work focuses on the change from strain dependent to strain independent recrystallization behaviour as a function of the alloy content, initial microstructure and deformation conditions. It is found that there is a complex interaction between deformation, recrystallization and strain induced precipitation, which has significant implications for controlled rolling in hot strip and plate mills. The data also revealed that the pre-existing precipitates did not influence the behaviour of post deformation softening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deformation dilatometry has been used to simulate controlled hot rolling followed by controlled cooling of a group of low- and ultralow-carbon microalloyed steels containing additions of boron and/or molybdenum to enhance hardenability. Each alloy was subjected to simulated recrystallization and nonrecrystallization rolling schedules, followed by controlled cooling at rates from 0.1 °C/s to about 100 °C/s, and the corresponding continuous-cooling-transformation (CCT) diagrams were constructed. The resultant microstructures ranged from polygonal ferrite (PF) for combinations of slow cooling rates and low alloying element contents, through to bainitic ferrite accompanied by martensite for fast cooling rates and high concentrations of alloying elements. Combined additions of boron and molybdenum were found to be most effective in increasing steel hardenability, while boron was significantly more effective than molybdenum as a single addition, especially at the ultralow carbon content. Severe plastic deformation of the parent austenite (>0.45) markedly enhanced PF formation in those steels in which this microstructural constituent was formed, indicating a significant effective decrease in their hardenability. In contrast, in those steels in which only nonequilibrium ferrite microstructures were formed, the decreases in hardenability were relatively small, reflecting the lack of sensitivity to strain in the austenite of those microstructural constituents forming in the absence of PF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper the effect of grain refinement on the dynamic response of ultra fine-grained (UFG) structures for C–Mn and HSLA steels is investigated. A physically based flow stress model (Khan-Huang-Liang, KHL) was used to predict the mechanical response of steel structures over a wide range of strain rates and grain sizes. However, the comparison was restricted to the bcc ferrite structures. In previous work [K. Muszka, P.D. Hodgson, J. Majta, A physical based modeling approach for the dynamic behavior of ultra fine-grained structures, J. Mater. Process. Technol. 177 (2006) 456–460] it was shown that the KHL model has better accuracy for structures with a higher level of refinement (below 1 μm) compared to other flow stress models (e.g. Zerrili-Armstrong model). In the present paper, simulation results using the KHL model were compared with experiments. To provide a wide range of the experimental data, a complex thermomechanical processing was applied. The mechanical behavior of the steels was examined utilizing quasi-static tension and dynamic compression tests. The application of the different deformation histories enabled to obtain complex microstructure evolution that was reflected in the level of ferrite refinement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microstructures and Charpy impact properties have been examined in two microalloyed steels following heat treatments to simulate weld heat affected zone (HAZ) structures over a range of heat input conditions, characterised by the cooling time from 800 to 500°C (Δt8/5). The base materials were low carbon structural steel plates microalloyed with vanadium and nitrogen (V-N) and niobium (Nb), respectively. The toughnesses of the HAZs displayed remarkably different behaviours as shown by their impact transition temperatures. For the V-N steel, the toughness improved with increasingly rapid cooling (low heat input conditions) whereas the Nb steel showed an opposite trend. Some of this behaviour could be explained by the presence of coarse ferrite grains in the slowly cooled V-N steel. However, other conditions where all the structures were bainitic and rather similar in optical micrographs gave widely different toughness values. The recently developed method of five dimensional boundary analysis based on electron backscattering diffraction has been applied to these cases for the first time. This showed that the lath boundaries in the bainite were predominantly on {1 1 0} planes of the ferrite and that the average spacing of these boundaries varied depending on steel composition and cooling rate. Since {1 1 0} is also the slip plane in ferrite, it is considered that close spacing between the lath boundaries inhibits general plasticity at stress concentrations and favours initiation of fracture. The differences between the two steels are believed to be due to their transformation behaviours on cooling where precipitation of vanadium nitride in austenite accelerates ferrite formation and raises the temperature of the phase transformation in V-N steels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A rapid method has been developed to determine recrystallization kinetics of Nb microalloyed steels by interrupted hot torsion test. The softening behaviour was achieved as a function of different processing parameters. The method clearly identified three regions, where the strain dependency of the recrystallization rate varied. Firstly, at large strains the rate of recrystallization was not a function of strain; this is generally ascribed to metadynamic recrystallization. At lower strains the time to 50% recrystallization showed a power low relationship with strain, characteristic of static recrystallization. A further break point exists on the time for 50% softening curve when strain induced precipitation occurs in the material. The onset of strain induced precipitation was at strains below the strain to the peak stress at temperatures below 900°C. The experimental results were used to estimate the time for 50% softening and to anticipate the onset of the strain induced precipitation for the alloy of this study. Grain refinement of the recrystallized austenite continued to strains significantly beyond the peak stress and beyond the static to metadynamic recrystallization rate transition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Precipitation strenghthening is one of the most important approaches for enhancing the strenght of microalloyed steels. This study has made a significant contribution in understanding the nucleation and growth mechanism of nanoscale interphase precipitates in steel during commercial processes. Atom Probe Tomography revealed the existence of nanoscale clusters with precipitates that then dictate the final strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses some experimental results on the influence of grain refinement on the final mechanical properties of IF and microalloyed steels designed for auto-body components. It shows also some modeling approaches to understanding the dynamic behavior of fine-rained materials. The Zerilli–Armstrong (Z–A) and Khan–Huang–Liang (KHL) models for studied steels were implemented into FEM code in order to simulate the dynamic compression tests with different strain rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work investigates the transformation behavior of a low-carbon Mo-Nb linepipe steel and the corresponding transformation product microstructures using deformation dilatometry. The continuous cooling transformation (CCT) diagrams have been constructed for both the fully recrystallized austenite and that deformed in uniaxial compression at 1148 K (875 °C) to a strain of 0.5 for cooling rates ranging from 0.1 to about 100 K/s. The obtained microstructures have been studied in detail using electron backscattered diffraction complemented by transmission electron microscopy. Heavy deformation of the parent austenite has caused a significant expansion of the polygonal ferrite transformation field in the CCT diagram, as well as a shift in the non-equilibrium ferrite transformation fields toward higher cooling rates. Furthermore, the austenite deformation has resulted in a pronounced refinement in both the effective grain (sheaf/packet) size and substructure unit size of the non-equilibrium ferrite microstructures. The optimum microstructure expected to display an excellent balance between strength and toughness is a mix of quasi-polygonal ferrite and granular bainite (often termed “acicular ferrite”) produced from the heavily deformed austenite within a processing window covering the cooling rates from about 10 to about 100 K/s.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By dilatometry, it is shown that vanadium microalloying additions to eutectoid carbon steels, which also contain an increased level of nitrogen, cause a marked decrease in hardenability when transforming from fine grained austenite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multi-phase, metastable, and multi-scale (M3) constitution of a novel transformation-induced plasticity (TRIP) steel (Fe-0.17C-6.5Mn-1.1Al-0.22Mo-0.05Nb, wt pct) was designed through thermodynamic calculations combined with experimental analysis. In this study, Mo and Nb microalloying was used to control the fraction of retained austenite and its mechanical stability during tensile deformation and to improve the yield strength. Thermodynamic calculations were developed to determine the critical annealing temperature, at which a large fraction of retained austenite (~38 pct) would be obtained through the effects of solute enrichment. The experimental observation was in good agreement with the predicted results. According to the critical annealing temperature, such an ultrafine (<200 nm) M3, microstructure with optimum mechanical stability was successfully achieved. The results of this work demonstrated the superior performance with improved yield strength of 1020 to 1140 MPa and excellent ductility (>30 pct), as compared with other TRIP steels. Both angle-selective backscatter and electron backscatter diffraction techniques were employed to interpret the transformation from the deformed martensitic laths to the ultrafine austenite and ferrite duplex structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of combined silicon and molybdenum alloying additions on microalloy precipitate formation in austenite after single- and double-step deformations below the austenite no-recrystallization temperature were examined in high-strength low-alloy (HSLA) steels microalloyed with titanium and niobium. The precipitation sequence in austenite was evaluated following an interrupted thermomechanical processing simulation using transmission electron microscopy. Large (~ 105 nm), cuboidal titanium-rich nitride precipitates showed no evolution in size during reheating and simulated thermomechanical processing. The average size and size distribution of these precipitates were also not affected by the combined silicon and molybdenum additions or by deformation. Relatively fine (< 20 nm), irregular-shaped niobium-rich carbonitride precipitates formed in austenite during isothermal holding at 1173 K. Based upon analysis that incorporated precipitate growth and coarsening models, the combined silicon and molybdenum additions were considered to increase the diffusivity of niobium in austenite by over 30% and result in coarser precipitates at 1173 K compared to the lower alloyed steel. Deformation decreased the size of the niobium-rich carbonitride precipitates that formed in austenite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Austenitic steels with a carbon content of 0.0037 to 0.79 wt% C are torsion tested and modeled using a physically based constitutive model and an Integrated Phenomenological and Artificial neural Network (IPANN) model. The prediction of both the constitutive and IPANN models on steel 0.017 wt% C is then evaluated using a finite element (FEM) code ABAQUS with different reduction in the thickness after rolling through one roll stand. It is found that during the rolling process, the prediction accuracy of the reaction force from FEM simulation for both constitutive and IPANN models depends on the strain achieved (average reduction in thickness). By integrating FEM into IPANN model and introducing the product of strain and stress as an input of the ANN model, the accuracy of this integrated FEM and IPANN model is higher than either the constitutive or IPANN model.