13 resultados para METAL-ELECTRODES

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three cyclic vinyl based additives, based respectively on oxygen, sulphur and fluorine, are tested for their ability to improve the cycling of lithium in a hostile ionic liquid medium. Oxygen based vinylene carbonate is found to offer the best protection of the lithium metal whilst allowing very consistent lithium cycling to occur. The vinylene carbonate based system under study is, however, imperfect. Lithium metal is deposited in a dendritic morphology, and vinylene carbonate is rapidly consumed during lithium cycling if it is present in a small quantity. Our results suggest that ionic liquid systems critically relying on a small amount of additive to protect a lithium electrode are not viable for long cycle life secondary batteries. It is suggested that an ionic liquid which itself is lithium metal compatible be used instead.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A freestanding conducting polymer plate with one side forming a Schottky contact and the other side an Ohmic contact with two different metal electrodes can generate a DC voltage with an output current density as high as 218.6 μA cm(-2) upon mechanical deformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order for sodium batteries to become a safe, lower cost option for large scale energy storage, minimising the price of all components is important. We report here on the application of a pyrrolidinium room temperature ionic liquid comprising the dicyanamide anion as a successful electrolyte system for sodium metal batteries that does not contain expensive fluorinated species. The effects of plating/stripping of sodium from Na metal electrodes has been investigated in a symmetrical Na | electrolyte | Na configuration at a current density of 10 μA cm− 2. Comparisons are drawn to reference organic electrolytes comprising propylene carbonate-fluoroethylene carbonate. Residual water molecules in the ionic liquid electrolyte are observed to have a significant effect upon the surface film and subsequent favourable plating/stripping behaviour of symmetrical cells and this is explored in detail. An increase of the moisture content from 90 ppm to 400 ppm impedes both electrodeposition and electrodissolution of the Na+/Na. This is investigated at Ni electrodes using cyclic voltammetry at different Na+-salt concentrations to further understand the mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although metal dithiocarbamate complexes have been studied extensively, there is in sate cases a distinct lack of data concerning redox properties and the products thereof. This is particularly true for complexes of the late transition and main group metals which are important in agriculture, industry, and chemical analysis. Hence, using electrochemical techniques, the redox behaviour of dithiocarbamate complexes of zinc, cadmium, mercury, lead, and tellurium has been examined. The products of oxidation and reduction have also been characterized by spectroscopic techniques (NMR, EPR, UV, and IR), mass spectrometry, conductivity, and Where possible, crystallographic study of an isolated compound. The species studied were without exception labile with the result that electrochemistry at mercury electrodes was influenced by the great stability of the mercury dithiocarbamate (Hg(RR’dtc) 2) complexes. Investigation of the latter showed that oxidative processes in the presence of mercury led to a new class of expounds: polymeric mercury dithiocarbamato cations. Oily one of these could be isolated as a solid, with the formula [Hg5(RR’dtc) 8](C104)2 For R=R’=ethyl the crystal structure was determined. For other metal dithiocarbamates the electrochemical behaviour at mercury electrodes in many ways paralleled that of the mercury analogues. Thus oxidative processes involved oxidation of electrode mercury to form mixed metal cationic species. Polarographic reduction led to the metal amalgam, usually via formation of mercury dithiocarbamate. Electrochemical studies at inert electrode materials such as platinum yielded distinctly different responses, with both oxidation and reduction being more difficult. Oxidation products at platinum electrodes gave identical polarographic responses to those firm mercury electrodes due to rapid interaction of the former with electrode mercury. The results are in sharp contrast to much of the previous work on transition metal dithiocarbamates for which electrochemical redox processes are often metal based arid not explicated by interaction with the electrode material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical metal ion sensor has been developed with a detection limit of less than 0.2 ppt by the covalent attachment of the tripeptide Gly-Gly-His as a recognition element to a 3-mercaptopropionic acid modified gold electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical sensor for the detection of Cu2+ is reported which incorporates poly-l-aspartic acid (PLAsp) with 32–96 aspartate units as a selective ligand for the metal ion. PLAsp is covalently attached to a gold electrode modified with a monolayer of 3-mercaptopropionic acid using carbodiimide coupling via an N-hydroxysuccinimide (NHS) ester intermediate. The acid side groups and deprotonated peptide nitrogens on two aspartate moieties are thought to be primarily responsible for chelation of Cu2+, which remains bound when reduced to Cu+. A consequence of the multiple binding points that are available with a polypeptide is the low detection limit. The lowest concentration detected was 3 nM (0.2 ppb) achieved with Osteryoung square wave voltammetry. This detection limit compares favourably with that of ICP-OES and previously reported cysteine-modified electrodes. Analysis of tap and lake water samples using the PLAsp-modified electrode agreed well with ICP-OES analysis of the same samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ionic liquid (IL) N-methyl-N-butylmorpholinium bis(fluorosulfonyl)imide (C4mmor FSI) is examined from physical and electrochemical perspectives. Pulsed field gradient NMR spectroscopy shows that ion diffusivities are low compared with similar, non-ethereal ILs. Ionicity values indicate that above room temperature, less than 50% of ions contribute to conductivity.

Lithium cycling in symmetrical cells using a C4mmor FSI-based electrolyte is best demonstrated at elevated temperatures. Specific capacities of 130 mAh g−1 are achieved in a Li−LiFePO4 battery at 85 °C. FT-IR spectroscopic investigations of lithium electrodes suggest the presence of alkoxide species in the solid electrolyte interphase (SEI), implying a ring-opening reaction of C4mmor with lithium metal. In contrast, the SEI derived from N-methyl-N-propylpiperidinium FSI lacks the alkoxide signature but shows signs of alkyl unsaturation, and the activation energy for Li+ transport through this SEI is slightly lower than that for the C4mmor-derived SEI. Our detailed findings give insight into the capabilities and limitations of rechargeable lithium metal batteries utilizing a C4mmor FSI electrolyte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physicochemical properties of a range of NaNTf2 (or NaTFSI) salt concentrations in N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (or C3mpyrFSI) ionic liquid were investigated by DSC, conductivity, cyclic voltammetry and diffusivity studies. Cyclic voltammetry indicated a stable sodium plating behavior with a current of 5 mA cm(-2) at 25 °C to 20 mA cm(-2) at 100 °C, along with high reversibility identifying this electrolyte as a possible candidate for sodium-ion or sodium metal battery applications. (23)Na NMR chemical shifts and spectral linewidths (FWHM) indicate a complex coordination of the Na(+) ion which is dependent on both temperature and salt concentration with an apparently stronger coordination to the NTf2 anion upon increasing the NaNTf2 concentration. Temperature dependent PFG-NMR diffusion measurements show that both FSI and NTf2 have a comparable behaviour although the smaller FSI anion is more diffusive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A range of high-capacity Li-ion anode materials (conversion reactions with lithium) suffer from poor cycling stability and limited high-rate performance. These issues can be addressed through hybridization of multiple nanostructured components in an electrode. Using a Co3O4-Fe2O3/C system as an example, we demonstrate that the cycling stability and rate performance are improved in a hybrid electrode. The hybrid Co3O4-Fe2O3/C electrode exhibits long-term cycling stability (300 cycles) at a moderate current rate with a retained capacity of approximately 700 mAh g(-1). The reversible capacity of the Co3O4-Fe2O3/C electrode is still about 400 mAh g(-1) (above the theoretical capacity of graphite) at a high current rate of ca. 3 A g(-1), whereas Co3O4-Fe2O3, Fe2O3/C, and Co3O4/C electrodes (used as controls) are unable to operate as effectively under identical testing conditions. To understand the structure-function relationship in the hybrid electrode and the reasons for the enhanced cycling stability, we employed a combination of ex situ and in situ techniques. Our results indicate that the improvements in the hybrid electrode originate from the combination of sequential electrochemical activity of the transition metal oxides with an enhanced electronic conductivity provided by percolating carbon chains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All rights reserved. A graphene nanodots-encaged porous gold electrode via ion beam sputtering deposition (IBSD) for electrochemical sensing is presented. The electrodes were fabricated using Au target, and a composite target of Al and graphene, which were simultaneously sputtered onto glass substrates by Ar ion beam, followed with hydrochloric acid corrosion. The as-prepared graphene nanodots-encaged porous gold electrodes were then used for the analysis of heavy metal ions, e.g. Cu2+ and Pb2+ by Osteryoung square wave voltammetry (OSWV). These porous electrodes exhibited enhanced detection range for the heavy metal ions due to the entrapped graphene nanodots in 3-D porous structure. In addition, it was also found that when the thickness of porous electrode reached 40 nm the detection sensitivity came into saturation. The linear detection range is 0.009-4 μM for Cu2+ and 0.006-2.5 μM for Pb2+. Good reusability and repeatability were also observed. The formation mechanism and 3-D structure of the porous electrode were also investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectra (XPS). This graphene entrapped 3-D porous structure may envision promising applications in sensing devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing interest to hybrid energy storage devices, such as lithium-ion capacitors, in which battery-type electrodes are combined with capacitor-type ones. It is anticipated that the energy density (either gravimetric or volumetric) of lithium-ion capacitors is improved if pseudocapacitive or fast insertion materials are used instead of conventional activated carbon (AC) in the capacitor-type electrode. MXenes, a new family of two-dimensional transition metal carbides, demonstrate metallic conductivity and fast charge-discharge behavior that make them suitable for this application. In this study, we move beyond single electrodes, half-cell studies and demonstrate three types of hybrid cells using Nb2CTx-carbon nanotube (CNT) films. It is shown that lithiated graphite/Nb2CTx-CNT, Nb2CTx-CNT/LiFePO4 and lithiated Nb2CTx-CNT/Nb2CTx-CNT cells are all able to operate within 3 V voltage windows and deliver capacities of 43, 24 and 36 mAh/g (per total weight of two electrodes), respectively. Moreover, the polarity of the electrodes can be reversed in the symmetric Nb2CTx-CNT cells from providing a positive potential between 0 and 3 V to a negative one from -3 to 0 V. It is shown that the volumetric energy density (50-70 Wh/L) of our first-generation devices with MXene electrodes exceeds that of a lithium titanate/AC capacitor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To meet the urgent requirement of determining trace Pb2+ and Cd2+ in seawater on site, herein we developed a simple but novel electrochemical method, named as double stripping voltammetry, using only a portable heavy metal analyzer. The proposed method consisted of three steps: First, the targeted heavy metal ions in bulk solution were concentrated onto an ionic liquid-graphite-based paste working electrode (ILGPE), which exhibits a dramatic ability of accumulation, by electrodeposition in the presence of Bi3+. Second, the three-electrode arrangement, including the ILGPE loaded with the reduced products, was transferred into 1.0mL acetate buffer solution, followed by a stripping procedure. Third, the measurement was performed with the other stripping voltammetry procedure by using a glassy carbon electrode as working electrode. Under optimum conditions, the linear range values for Pb2+ and Cd2+ in seawater were 0.2-3.2 μg/L and 0.1-3.2 μg/L, respectively. The concentrations of Pb2+ and Cd2+ in five real samples collected from coastal sites of Qingdao City were determined on site, and the results were in good agreement with that obtained with the atomic absorption spectroscopy method. In addition, the analytical performance of working electrode modified with Bi film by in situ mode was investigated in comparison with that by ex situ mode. The results showed that the in situ mode was much better than the ex situ one.