33 resultados para MECHANICAL ALLOYING

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pure elemental powder mixtures with the compositions of Mg65NixSi35x (x = 10, 20, 25, 33 at.%) were subject to high-energy ball mill, and the structures of the mixtures at different intervals of milling were characterised by X-ray diffraction (XRD). The compositional dependency of the glass forming ability (GFA) in Mg–Ni–Si system was evaluated based on the experimental results and the theoretical calculation. The compositional dependency of GFA in Mg–Ni–Si system can be understood well by comparing the enthalpies of the crystalline and amorphous phases based on the Miedema's theory for the formation enthalpy of alloys. Increasing the Ni/Mg ratio and/or decreasing Si content can improve the amorphous formability. The calculation results might be of great help in optimising the composition with high GFA in Mg–Ni–Si system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, Ti-16Sn-4Nb alloy was prepared by mechanical alloying (MA). Optical microscopy, scanning electron microscopy combined with energy dispersive X-ray analysis (SEM-EDX), and X-ray diffraction analysis (XRD) were used to characterise the phase transformation and the microstructure evolution. Results indicated that ball milling to 8 h led to the formation of a supersaturated hcp α-Ti and partial amorphous phase due to the solid solution of Sn and Nb into Ti lattice. The microstructure of the bulk sintered Ti-16Sn-4Nb alloy samples made from the powders at shorter ball milling times, i.e. 20 min- 2 h, exhibited a primary α surrounded by a Widmanstätten structure (transformed β); while in the samples made from the powders at longer ball milling times, i.e. 5- 10 h, the alloy evolved to a microstructure with a disordered and fine β phase dispersed homogeneously within the α matrix. These results contribute to the understanding of the microstructure evolution in alloys of this type prepared by powder metallurgy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous 55Mg35NilOSi alloy powder has been synthesized by mechanical alloying technique using pure Mg, Ni and Si elemental powders. The transformation of the crystalline powders into an amorphous one has been investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry. The new material produced has a higher thermal stability than reported results, which is beneficial to the fabrication of Mg-Ni-Si bulk amorphous components through powder metallurgy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the influence of process control agent (PCA) on the characteristics of powder and bulk sintered Ti-16Sn-4Nb (wt. %) alloy prepared by mechanical alloying has been investigated. The elemental Ti, Sn and Nb powders were mechanically alloyed in a planetary ball mill for a short period of time using two types of PCA, namely stearic acid (SA) and ethylene bis-stearamide (EBS). The powder morphology, microstructural evolution of the bulk sintered alloy, phase formation and hardness of the alloy have been studied as a function of PCA. Results indicated that the addition of PCA leads to a delay in aIloy formation and introduces contaminations (mainly carbon and oxygen) into the material. The microstructural observation of the bulk alloy revealed a homogeneous distribution of fine Nb-rich colonies (ß-phase) within the a-Ti matrix for small amount of PCA. The hardness values of samples exhibited a significant increase with increasing amount of PCA, reaching a value of ~ 600 BV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study examines the influence of different contents and types of process control agent (PCA), i.e., stearic acid (SA) and ethylene-bis-stearamide (EBS), on the microstructural evolution and characteristics of Ti-16Sn-4Nb (wt pct) alloy powders and bulk samples. The characterization of the powders and bulk samples was carried out by using chemical analysis, optical microscopy, scanning electron microscopy (SEM) combined with energy-dispersive spectrometry (EDS), and X-ray diffractometry. Results indicated that the powder recovered from the ball milling containers increased with increasing amounts of SA and EBS. Furthermore, adding more SA or EBS to the powder mixture resulted in a considerably smaller particle size, with a flaky-shaped morphology for the given ball milling time. Also, a slightly higher effectiveness was found for EBS when compared to SA. Meanwhile, the addition of both SA and EBS led to a delay in the alloy formation during mechanical alloying (MA) and caused contamination of the material with mainly carbon (C) and oxygen (O). An optimum amount of 1 wt pct PCA led to a good balance between cold welding and fracturing, and thus favored the formation of the titanium alloy. The microstructural observation of the bulk alloy showed a homogeneous distribution of fine Nb-rich ß-phase colonies within the α-Ti matrix with the addition of PCA less than 1 wt pct.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Al70Ni10Ti10Zr5Ta5 amorphous alloy powder was fabricated by mechanical alloying. The phase structure and characteristic temperatures of the alloy were determined by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. The glass transition behavior and crystallization kinetics were analyzed using Lasocka and Kissinger functions. The results show that the alloy has a higher crystallization temperature, a higher effective activation energy of crystallization and a wider supercooled liquid region than the previously reported values, suggesting a high thermal stability and promising applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of regular additions of a surfactant (ethylene bis-stearamide; EBS) at different time intervals was investigated on the powder characteristics of a biomedical Ti-10Nb-3Mo alloy (wt.%). Ball milling was performed for 10 h on the elemental powders in four series of experiments at two rotation speeds (200 and 300 rpm). The addition of 2 wt.% total EBS at different time intervals during ball milling resulted in noticeable changes in particle size and morphology of the powders. The surfactant addition at shorter time intervals led to the formation of finer particles, a more homogenous powder distribution, a higher powder yield, and a lower contamination content in the final materials. Thermal analysis of the powders after ball milling suggested that differing decomposition rates of the surfactant were responsible for the measured powder particle changes and contamination contents. The results also indicated that the addition of surfactant during ball milling at 200 rpm caused a delay in the alloy formation, whereas ball milling at 300 rpm favored the formation of the titanium alloy.Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Group V–VI binary sulfides are semiconductors, and find application in a number of commercial devices. Synthesis of these metal sulfides is problematic, and traditional synthesis techniques utilizing thermal and chemical means have disadvantages such as a long process time, contamination, and the use of toxic substances. In this work, the novel synthesis technique of electric discharge assisted mechanical milling (EDAMM) has been used to rapidly synthesize Bi2S3 and Sb2S3 powders from elemental S and Sb/Bi powders. This technique is shown to be both rapid and successful, and produces crystalline metal sulfide powders with a particle size of approximately 2 μm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of milling time on the powder packing characteristics and compressive mechanical properties of a biomedical Ti-10Nb-3Mo alloy (wt.%) was investigated. Ball milling was performed on elemental metal powders at different milling times of 0 (blended), 2, 4, 6, 8, and 10 h. This article demonstrates that despite the beneficial effects of ball milling technique in the mechanical alloying of the Ti-based alloy, the ball-milled powders synthesized at longer milling times can adversely affect the packing density and significantly diminish the compressive mechanical properties of the sintered powders. Crown

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bone injuries and failures often require the inception of implant biomaterial. Research in this area has received increasing attention recently. In particular, porous metals are attractive due to its unique physical, mechanical, and new bone tissue ingrowth properties. In the present study, TiZr alloy powders were prepared using mechanical alloying. Novel TiZr alloy foams with relative densities of approximately 0.3 were fabricated by a powder metallurgical process. The TiZr alloy foams displayed an interconnected porous structure resembling bone and the pore size ranged from 200 to 500 μm. The compressive plateau stress and the Young’s modulus of the TiZr foam were 78.4 MPa and 15.3 GPa, respectively. Both the porous structure and the mechanical properties of the TiZr foam were very close to those of natural bone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various types of titanium alloys with high strength and low elastic modulus and, at the same time, vanadium and aluminium free have been developed as surgical biomaterials in recent years. Moreover, porous metals are promising hard tissue implants in orthopaedic and dentistry, where they mimic the porous structure and the low elastic modulus of natural bone. In the present study, new biocompatible Ti-based alloy foams with approximate relative densities of 0.4, in which Sn and Nb were added as alloying metals, were synthesised through powder metallurgy method.
The new alloys were prepared by mechanical alloying and subsequently sintered at high temperature using a vacuum furnace. The characteristics and the processability of the ball milled powders and the new porous titanium-based alloys were characterised by X-ray diffraction, optical
microscopy and scanning electron microscopy .The mechanical properties of the new titanium alloys were examined by Vickers microhardness measurements and compression testing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amorphous 55Mg35Ni10Si alloy powder has been synthesized by mechanical alloying technique using pure Mg, Ni and Si elemental powders. The transformation of the crystalline powders into an amorphous one has been investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry. The new material produced has a higher thermal stability than reported results, which is beneficial to the fabrication of Mg–Ni–Si bulk amorphous components through powder metallurgy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microstructural evolution and characteristics of the Ti–16Sn–4Nb powder particles and bulk alloys sintered from the powders ball-milled for various periods of time were studied. Results indicated that ball milling to 8 h led to the development of a supersaturated hcp α-Ti and partial amorphous phase due to the solid solution of Sn and Nb into Ti lattice. The bulk Ti–16Sn–4Nb alloy made from the powders ball milled for a short time, up to 2 h, exhibited a primary α and a Widmanstätten structure consisting of interlaced secondary α and β. With an increase in ball milling time up to 10 h, the microstructure evolved into a fine β phase dispersed homogeneously within α phase matrix. The microhardness values of the bulk alloy in both α- and β-phases increased with the increasing of the ball milling time and reached a plateau value at 8 h and longer, i.e. 687 and 550 HV for α- and β-phases, respectively. Likewise, the microhardness of the α phases was always higher than that of the β phases in the bulk alloys made from the powders ball milled for the same milling time.