38 resultados para MATRIX METALLOPROTEINASE-9 GENE

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the matrix metalloproteinase (MMP) family are important for the remodeling of the extracellular matrix in a number of biological processes including a variety of immune responses. Two members of the family, MMP2 and MMP9, are highly expressed in specific myeloid cell populations in which they play a role in the innate immune response. To further expand the repertoire of molecular reagents available to study zebrafish myeloid cell development, the matrix metalloproteinase 9 (mmp9) gene from this organism has been identified and characterized. The encoded protein is 680 amino acids with high homology to known MMP9 proteins, particularly those of other teleost fish. Maternal transcripts of mmp9 are deposited in the oocyte and dispersed throughout the early embryo. These are replaced by specific zygotic transcripts in the notochord from 12 h post fertilization (hpf) and also transiently in the anterior mesoderm from 14 to 16 h post fertilization. From 24 h post fertilization, mmp9 expression was detected in a population of circulating white blood cells that are distinct from macrophages, and which migrate to the site of trauma, and so likely represent zebrafish heterophils. In the adult, mmp9 expression was most prominent in the splenic cords, a site occupied by mature myeloid cells in other species. These results suggest that mmp9 will serve as a useful marker of mature myeloid cells in the zebrafish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deposition of islet amyloid polypeptide (IAPP) as amyloid is a pathological hallmark of the islet in type 2 diabetes, which is toxic to β-cells. We previously showed that the enzyme neprilysin reduces islet amyloid deposition and thereby reduces β-cell apoptosis, by inhibiting fibril formation. Two other enzymes, matrix metalloproteinase (MMP)-2 and MMP-9, are extracellular gelatinases capable of degrading another amyloidogenic peptide, Aβ, the constituent of amyloid deposits in Alzheimer disease. We therefore investigated whether MMP-2 and MMP-9 play a role in reducing islet amyloid deposition. MMP-2 and MMP-9 mRNA were present in mouse islets but only MMP-9 activity was detectable. In an islet culture model where human IAPP (hIAPP) transgenic mouse islets develop amyloid but nontransgenic islets do not, a broad spectrum MMP inhibitor (GM6001) and an MMP-2/9 inhibitor increased amyloid formation and the resultant β-cell apoptosis. In contrast, a specific MMP-2 inhibitor had no effect on either amyloid deposition or β-cell apoptosis. Mass spectrometry demonstrated that MMP-9 degraded amyloidogenic hIAPP but not nonamyloidogenic mouse IAPP. Thus, MMP-9 constitutes an endogenous islet protease that limits islet amyloid deposition and its toxic effects via degradation of hIAPP. Because islet MMP-9 mRNA levels are decreased in type 2 diabetic subjects, islet MMP-9 activity may also be decreased in human type 2 diabetes, thereby contributing to increased islet amyloid deposition and β-cell loss. Approaches to increase islet MMP-9 activity could reduce or prevent amyloid deposition and its toxic effects in type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Combination of COL-3, a matrix metalloproteinase inhibitor, and doxorubicin (DOX) might be a promising anticancer regimen. The present study was to examine the potential pharmacokinetic interactions and toxicity profile following their coadministration in rats.
Methods Normal rats were treated with single agent or different combinations with oral or intravenous COL-3 and DOX, and the bile-duct cannulated (BDC) rats received oral COL-3 plus DOX. In a separate disposition study, the effects of DOX on the biliary, urinary, and fecal excretion of COL-3 were examined. In addition, the effects of DOX on in vitro protein binding, metabolism, and transport of COL-3 across Caco-2 monolayers were investigated.
Results COL-3 did not affect the pharmacokinetics of DOX in rats. However, treatment with DOX significantly decreased the oral absorption, and prolonged the elimination, of COL-3 in the normal rats, but not in the BDC rats. DOX did not alter the biliary and urinary excretion of COL-3, but significantly decreased the fecal excretion of COL-3. DOX significantly enhanced the basolateral to apical flux of COL-3 across Caco-2 monolayers, but had no apparent effects on the protein binding and metabolism of COL-3. The combination of DOX with oral COL-3 did not significantly (p > 0.05) increase the acute diarrhea score and intestinal damage compared to rats receiving DOX alone.
Conclusions These results indicated that DOX altered the oral absorption and elimination of COL-3, largely resulting from gastrointestinal toxicity caused by biliary excretion of DOX. Further studies are required to explore the efficacy and optimized dosage regimen of this promising combination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the contribution of matrix degradation in the two-layer avian sclera to the development of myopia. Tissue inhibitor of metalloproteinase-2 (TIMP-2) was used to inhibit chick scleral collagen degradation with (3)H-proline, a marker for this effect. Ex vivo scleral culture experiments confirmed TIMP-2 doses for in vivo experimentation. Ocular growth and refractive response to exogenous TIMP-2 (11.25, 2.25, and 0.45 picomoles, plus vehicle only) were monitored in 7-day-old chicks during the induction of myopia over 4 days with a translucent occluder. Collagen degradation was assessed, in whole sclera and in separated scleral layers by using the same paradigm (11.25 picomoles TIMP-2; vehicle only).Approximately 60% of collagen degradation was inhibited with low (2 nM) doses of TIMP-2 in the ex vivo sclera. Degradative activity in the in vivo chick sclera increased significantly (46%) during myopia development, with all the altered activity confined to the fibrous layer. Addition of TIMP-2 significantly reduced (by 46%) this accelerated scleral collagen degradation, also by acting in the fibrous layer. TIMP-2 had no significant effect on (3)H-proline incorporated in the cartilaginous scleral layer and cornea. Despite inhibiting collagen degradation TIMP-2 had no significant effect on myopia development. Increased collagen degradation is a feature of scleral remodeling in chick myopia development, but is confined to the fibrous scleral layer. Significant inhibition of this collagenolytic activity with TIMP-2 has little effect on refractive error development, suggesting that collagen degradation in the sclera contributes little to the development of myopia in the chick.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third highest cause of cancer-related mortality in humans. Epigallocatechin-3-gallate (EGCG) has been shown to inhibit the metastatic activity of certain cancer cells. The aim of this study was to determine the effects and molecular mechanism(s) of action of EGCG in human HCC cells. A migration and invasion assay for the metastatic behavior of HCCLM6 cells was performed. The anti-metastatic effects of EGCG were investigated by RT-PCR and gelatin zymography. A total cellular protein profile was obtained using 2-dimensional gel electrophoresis (2-DE), followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analyses of proteins with significant differences in expression following treatment with EGCG. The results revealed that EGCG induced apoptosis and inhibited the metastasis of HCCLM6 cells. The anti-metastatic effects of EGCG were associated with the inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 activity. The expression levels of far upstream element (FUSE) binding protein 1 (FUBP1), heat shock protein beta 1 (HSPB1), heat shock 60 kDa protein 1 (chaperonin) (CH60) and nucleophosmin (NPM) proteins, which are associated with metastasis, were significantly altered in the EGCG-treated HCCLM6 cells. The data from the present study suggest that EGCG has potential as a therapeutic agent for the treatment of HCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we sought to determine whether a Titin peptide fragment can serve as a clinical biomarker for changes in muscle mass.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Few models are in place for analysis of extreme lactation patterns such as that of the fur seals which are capable of extended down regulation of milk production in the absence of involution. During a 10–12 month lactation period, female fur seals suckle pups on shore for 2–3 days, and then undertake long foraging trips at sea for up to 28 days, resulting in the longest intersuckling bouts recorded. During this time the mammary gland down regulates milk production. We have induced Cape fur seal (Arctocephalus pusillus pusillus) mammary cells in vitro to form mammospheres up to 900 μm in diameter, larger than any of their mammalian counterparts. Mammosphere lumens were shown to form via apoptosis and cells comprising the cellular boundary stained vimentin positive. The Cape fur seal GAPDH gene was cloned and used in RT-PCR as a normalization tool to examine comparative expression of milk protein genes (αS2-casein, β-lactoglobulin and lysozyme C) which were prolactin responsive. Cape fur seal mammary cells were found to be unique; they did not require Matrigel for rapid mammosphere formation and instead deposited their own matrix within 2 days of culture. When grown on Matrigel, cells exhibited branching/stellate morphogenesis highlighting the species-specific nature of cell–matrix interactions during morphological differentiation. Matrix produced in vitro by cells did not support formation of human breast cancer cell line, PMC42 mammospheres. This novel model system will help define the molecular pathways controlling the regulation of milk protein expression and species specific requirements of the extracellular matrix in the cape fur seal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle insulin sensitivity is enhanced after acute exercise and short-term endurance training. We investigated the impact of exercise on the gene expression of key insulin-signaling proteins in humans. Seven untrained subjects (4 women and 3 men) completed 9 days of cycling at 63 ± 2% of peak O2 uptake for 60 min/day. Muscle biopsies were taken before, immediately after, and 3 h after the exercise bouts (on days 1 and 9). The gene expression of insulin receptor substrate-2 and the p85α subunit of phosphatidylinositol 3-kinase was significantly higher 3 h after a single exercise bout, although short-term training ameliorated this effect. Gene expression of insulin receptor and insulin receptor substrate-1 was not significantly altered at any time point. These results suggest that exercise may have a transitory impact on the expression of insulin receptor substrate-2 and phosphatidylinositol 3-kinase; however, the predominant actions of exercise on insulin sensitivity appear not to reside in the transcriptional activation of the genes encoding major insulin-signaling proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of a single bout of exercise and exercise training on the expression of genes necessary for the transport and beta -oxidation of fatty acids (FA), together with the gene expression of transcription factors implicated in the regulation of FA homeostasis were investigated. Seven human subjects (3 male, 4 female, 28.9 ± 3.1 yr of age, range 20-42 yr, body mass index 22.6 kg/m2, range 17-26 kg/m2) underwent a 9-day exercise training program of 60 min cycling per day at 63% peak oxygen uptake (VO2 peak; 104 ± 14 W). On days 1 and 9 of the program, muscle biopsies were sampled from the vastus lateralis muscle at rest, at the completion of exercise, and again 3 h postexercise. Gene expression of key components of FA transport [FA translocase (FAT/CD36), plasma membrane-associated FA-binding protein], beta -oxidation [carntine palmitoyltransferase(CPT) I, beta -hydroxyacyl-CoA dehydrogenase] and transcriptional control [peroxisome proliferator-activated receptor (PPAR)alpha , PPARgamma , PPARgamma coactivator 1, sterol regulatory element-binding protein-1c] were unaltered by exercise when measured at the completion and at 3 h postexercise. Training increased total lipid oxidation by 24% (P < 0.05) for the 1-h cycling bout. This increased capacity for lipid oxidation was accompanied by an increased expression of FAT/CD36 and CPT I mRNA. Similarly, FAT/CD36 protein abundance was also upregulated by exercise training. We conclude that enhanced fat oxidation after exercise training is most closely associated with the genes involved in regulating FA uptake across the plasma membrane (FAT/CD36) and across the mitochondrial membrane (CPT I).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Dietary fatty acids may be important in regulating gene expression. However, little is known about the effect of changes in dietary fatty acids on gene regulation in human skeletal muscle.
Objective: The objective was to determine the effect of altered dietary fat intake on the expression of genes encoding proteins necessary for fatty acid transport and &szlig;-oxidation in skeletal muscle.
Design: Fourteen well-trained male cyclists and triathletes with a mean (&plusmn; SE) age of 26.9 &plusmn; 1.7 y, weight of 73.7 &plusmn; 1.7 kg, and peak oxygen uptake of 67.0 &plusmn; 1.3 mL &dot; kg-1 &dot; min-1 consumed either a high-fat diet (HFat: > 65% of energy as lipids) or an isoenergetic high-carbohydrate diet (HCho: 70–75% of energy as carbohydrate) for 5 d in a crossover design. On day 1 (baseline) and again after 5 d of dietary intervention, resting muscle and blood samples were taken. Muscle samples were analyzed for gene expression [fatty acid translocase (FAT/CD36), plasma membrane fatty acid binding protein (FABPpm), carnitine palmitoyltransferase I (CPT I), &szlig;-hydroxyacyl-CoA dehydrogenase (&szlig;-HAD), and uncoupling protein 3 (UCP3)] and concentrations of the proteins FAT/CD36 and FABPpm.
Results: The gene expression of FAT/CD36 and &szlig; -HAD and the gene abundance of FAT/CD36 were greater after the HFat than after the HCho diet (P < 0.05). Messenger RNA expression of FABPpm, CPT I, and UCP-3 did not change significantly with either diet.
Conclusions
: A rapid and marked capacity for changes in dietary fatty acid availability to modulate the expression of mRNA-encoding proteins is necessary for fatty acid transport and oxidative metabolism. This finding is evidence of nutrient-gene interactions in human skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dopamine D2 receptors (DRD2) in the central nervous system are involved in the regulation of feeding. It remains to be elucidated if mutations in the DRD2 gene contribute to the development of obesity. The aim of the present study was to investigate whether the Taq IA and Ser311Cys polymorphisms in the DRD2 gene are associated with obesity in Nauruan and Australian subjects. Subjects were selected based on extremes of the body mass index (BMI) distribution. Two groups of Australian women were selected. The leanest group had a mean BMI of 22.5 kg/m2 (range: 20.3-24.3) and the heaviest group had a mean of 36.1 kg/m2 (32.5-44.1). Four groups of Nauruan subjects were selected. Leanest men had a mean BMI of 33.0 kg/m2 (28.4-36.9), heaviest men had a mean of 52.8 kg/m2 (46.5-69.2), leanest women had a mean of 34.8 kg/m2 (28.2-41.8) and heaviest women had a mean of 55.1 kg/m2 (49.3-73.8). Subjects were genotyped for the Taq IA and Ser311Cys polymorphisms using polymerase chain reaction (PCR) restriction fragment length polymorphism analysis and allelic discrimination TaqmanTM PCR respectively. Leanest and heaviest groups were examined for differences in genotype frequency. Taq IA and Ser311Cys genotype frequencies did not differ significantly between leanest and heaviest Nauruan groups, or between leanest and heaviest Australians. Haplotype frequencies of these polymorphisms did not differ between leanest and heaviest groups. The Taq IA and Ser311Cys polymorphisms in the DRD2 gene are unlikely to be common causes of obesity in these populations.